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ABSTRACT

This paper presents a high-accuracy body-part tracking algorithm,
capable of achieving efficient human motion analysis from partial
view depth-data, suitable for deployment in real-life applications.
The algorithm uses a consumer-grade depth camera for data input
and combines a discriminative body part estimator along with a
generative tracker, utilizing a realistic human body model, in order
to track individual body limbs in short camera-distance, partial-
view scenarios. Additionally, a shape adaptation feature is also
introduced in order to further morph the human model based on
the observations. The implementation is tested in a lower-body
limbs tracking scenario, achieving promising accuracy and per-
formance on consumer-grade hardware. Moreover, a lower-body
motion dataset is also provided, consisting of 16 real-world se-
quences using automatic ground-truth annotations from a com-
mercial motion capture system.

Index Terms — limb tracking, pose estimation, motion anal-
ysis, shape adaptation, partial view

1. INTRODUCTION

Human motion analysis and pose estimation techniques have found
usage in a large variety of technology domains, aiming towards
the development of applications with life-like, human-centric in-
terfaces, which can increase the immersiveness and realism of the
services provided to the user, while simultaneously enhancing the
human-machine interaction experience, both on the virtual and
physical level. Using natural body motions and gestures, such
as head noding and arm waving, can enhance traditional computer
input methods, while utilizing the human body as a controller (i.e.
Microsoft Kinect, Nintendo Wii), can increase the immersiveness
of modern video-games, especially in the fast-developing area of
Augmented Reality (AR) games. Similarly, efficient human mo-
tion capture can provide realistic animations in virtual environ-
ments. Some of the areas where human pose estimation tech-
niques are typically utilized include: human computer interaction
(HCI), entertainment, security, healthcare, robotics [1][2].

Estimating the human pose can be an intricate and complex
task, as the human body presents high variability in shape and size,
along with a very large range of motion for each body part. While
earlier attempts used complex marker-based motion capture sys-
tems towards this end, the demand for adaptable body tracking so-
lutions suitable for user-friendly real-life applications, has turned
the focus of the research community towards marker-less human
pose estimation techniques, using low-cost consumer-grade RGB
and more recently, depth cameras.

The utilization of such cameras, however, does present some
drawbacks, which mainly derive from the cameras’ single view-
point and limited field of view [3]. While, these drawbacks rarely
cause any major problems in controlled environments, such as lab-
oratory trials, where the monitoring conditions tend to be ideal
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(i.e. full body view, no occlusions etc.), they can affect the mo-
tion analysis accuracy in real-life applications, where commonly
encountered environmental factors, such as short camera-user dis-
tance, can significantly reduce the viewing area of the sensor unit.
Moreover, the increased utilization of marker-less motion anal-
ysis techniques in a variety of commercial and scientific appli-
cations, has rendered high-accuracy limb-tracking necessary in
order to achieve a satisfactory user experience, such as tracking
fine gestures in free-hand HCI [4], realistically animating avatars
in VR applications, ensuring safety and effectiveness in physi-
cal human-machine interactions (i.e. object handover in service
robotics tasks) etc.

Towards this end, we propose a high-accuracy body-part track-
ing algorithm, capable of efficient tracking in scenarios where
there is only a partial view of the tracked human available. The de-
veloped implementation uses a commercially available depth sen-
sor for data input, and achieves real time performance on consumer-
grade hardware, thus making it suitable for deployment on com-
mercial and scientific applications.

2. RELATED WORK

A lot of research effort has been put towards human full-body pose
estimation and tracking, leading to the development of both dis-
criminative pose estimators, which estimate the human pose from
a single frame using large training datasets and machine learn-
ing techniques [2][5][6][7], and generative body pose trackers,
which track the detected body parts through consecutive frames
by matching the input data to articulated body templates and mini-
mizing an objective function through the utilization of various op-
timization techniques [8][9][10][11]. These methods, have been
developed mainly targeting views where the whole human body
is visible; however, they can be customised and re-purposed for
body part estimation in partial-view scenarios as well.

Plagemann et al. [5] propose a novel interest point detector
suitable for mesh and depth data. The interest points, called Ac-
cumulative Geodesic Extrema (AGEX), are computed by incre-
mentally maximizing geodesic distances on the surface of the 3D
mesh. Small depth image patches surrounding these points are
then used as local descriptors in order to train a boosted classi-
fier. In [6][7] randomized decision trees and forests are used for
body part detection and treat the body part segmentation as a per-
pixel classification task, with each pixel in the depth image being
evaluated separately.

The problem of hand detection and tracking for short distance
views is tackled in [12][13]. The hand area is segmented using
RGB-based skin detection and filtering of the depth data, in or-
der to provide an initial estimation of the hand position. Next,
a model-based approach for 3D tracking of hand articulations is
utilized with the hand pose being detected by minimizing the dif-
ference between the possible instances of a 3D hand model and
the real visual observations of the human hand, while an objec-



tive function measures that difference and defines the distance be-
tween the hand pose hypothesis and the observation. In similar
fashion, Schmidt et al. [9] achieve robust hand pose tracking us-
ing the general-purpose DART tracker, in which the objects are
represented by a symmetric version of the articulated Signed Dis-
tance Function (SDF) and gradient based optimization is used to
estimate the pose.

Towards lower limb tracking, usually within the context of
human gait analysis, Hu et al. [14] propose a method for tracking
the legs of a walking human. One depth and two RGB cameras
with direct frontal view of the walker’s legs are used in order to
track them, while a Hidden Markov Model (HMM) is utilized to
estimate the pose of the legs from the observed data. In [15], the
authors combine particle filtering [16] with the human locomotion
model [17] for feet tracking from a robot-mounted RGB camera,
while in [18] a complementary laserscan-based leg detection mod-
ule is proposed within the context of a larger indoor human track-
ing framework.

Our method builds upon current pose estimation techniques,
by combining a discriminative body part estimator along with a
generative tracker, which utilizes a realistic human body model,
in order to accurately track body limbs in close distance, partial
view scenarios. Moreover, a shape adaptation step is also intro-
duced, in order to further morph the human model based on the ob-
served limb, resulting in high accuracy reconstruction and track-
ing of the body part. The implementation described in the follow-
ing sections focuses on the scenario of lower-body limbs tracking,
namely the shins and feet, which can be encountered in areas such
as healthcare (lower body motion analysis i.e. testing maximal
range and speed for leg extension), assistive service robotics etc.
However, the same methodology can be easily utilized for upper-
body limbs tracking. Finally, we have constructed a lower-body
motion dataset comprised of real-world test sequences, along with
ground truth data, which is published openly [19] for future bench-
marks.

3. PROPOSED METHODOLOGY

The developed lower-limb tracker estimates the exact position of
the human’s legs, by trying to match a realistic articulated hu-
man body model, created offline using the MakeHuman [20] open-
source tool, to the observed human 3D point cloud. The 3D data
is produced by back-projecting the input depth image to the cam-
era’s 3D world coordinate system, while background / foreground
segmentation and a rough estimation of the human’s torso position
are considered to be known beforehand.

3.1. Model Initialization

For the lower-limb tracker to successfully estimate the position of
the human’s legs, the model must be initialized to a pose approx-
imating the actual pose of the observed legs. Towards this end
an interest point detector is utilized, based on the work of Plage-
mann et al. [5], in order to find candidate interest points on the
human’s feet. Specifically, starting from the approximate position
of the human’s torso, the geodesic distances along the surface of
the 3D human point cloud are calculated, utilizing Dijkstra’s algo-
rithm [21], in order find extrema points which correspond to the
human leg (foot and shin) (Figure 1a). The estimated points are
then used to segment the point cloud into foot and shin areas, by
backtracking from these points and clustering all the 3D points
that fall within an experimentally selected radius 7;;m5. Once the
point cloud is segmented, the Articulated Iterative Closest Point

i tcp ¢t

Figure 1. Model initialization: a) Geodesic distance calculation along the
surface of the human point cloud, b) Left - rough initialization based on
the detected extrema points, Right - pose refinement using A-ICP

Figure 2. 2D slice of the ray casting model. Points of the 3D model
(red) and the observation point cloud (green) that lie along the same ray
are considered corresponding points. The model points are then translated
along the ray in order to align with the observation points. In case of
multiple model points along a single ray, only the closest point is taken
into consideration.

(A-ICP) algorithm [22] is employed in order to register the human
point cloud to the human body model (Figure 1b).

3.2. Limb Tracking

After the completion of the initialization step, the human leg is
tracked in subsequent frames: for each frame, starting from the
last successful leg pose estimation, K-Dimensional (K-D) tree par-
titioning is performed in order to maintain points of interest be-
tween the human 3D point cloud and the initialized human model,
followed by point-to-plane ICP which aligns the maintained points
and the model. The overall ICP registration error is used as a
tracking failure metric: if it exceeds an error threshold Eyoot,
the foot tracking accuracy is deemed inadequate and the lower-
limb tracker is re-initialized following the initialization process
described above.

3.3. Shape Adaptation

An additional tracking feature is also introduced in order to ac-
count for the changes in the leg shape due to the clothes that the
tracked human may be wearing. Specifically, after each successful
model / point cloud alignment, the human model is dynamically
morphed based on the acquired point cloud; a ray casting model
[23], originating from the camera point of view, is utilized in or-
der to translate each point of the model to the position of the cor-
responding point of the 3D point cloud (Figure 2). Model points
that do not have any correspondences (e.g. points on the rear side
of the leg, which are not visible to the camera) are not taken into
consideration during the tracking step on the next frame, resulting
in faster convergence of the iterative algorithm and an accurate
representation of the tracked limb.

4. EXPERIMENTAL EVALUATION
4.1. Dataset Generation

For the experimental evaluation of the developed lower-limb tracker,
alower-body motion dataset was captured, using a Kinect vl RGB-



Figure 3. Left: dataset capture setup, Right: Kinect field of view, Bottom:
Pattern poses during the Kinect/Vicon calibration process.

1. Hip - at the center, under the groin

2. Knee - on the platella

3. Lower leg - between the shin and the foot
4. Big toe - on the tip

5 .Small toe - on the base

6 .Heel - under the ankle

Figure 4. Positions of the ground truth markers tracked by Vicon.

D camera. The camera was positioned at height h=1.3m and
tilted down at #=45°, while the subjects were seated at a distance
d=1.4m, facing towards the camera, thus providing a realistic cam-
era viewpoint for lower-body motion analysis (Figure 3). Each
subject was asked to lift and extend both legs while being mon-
itored by the camera, which recorded RGB and Depth frames at
30fps. In total 16 subjects (13 male, 3 female) participated in the
data recording procedure, resulting in 20000 captured Depth and
RGB frames. Before commencing the data capture process, the
RGB-D camera was externally calibrated to estimate the camera
intrinsic parameters and distortion coefficients, in order to ensure
correct pixel correspondence between the RGB and Depth frames
and accurate 2D-to-3D projection of the depth data.

The leg position and pose ground truth data were captured
using the Vicon motion capture system, which utilized 10 IR cam-
eras in order to track 6 reflective spherical markers (r=0.5cm) po-
sitioned on each leg, at 100 Hz. The exact positioning of the mark-
ers is presented in Figure 4.

In order to transform the ground truth data provided by Vi-
con to the coordinate system of the Kinect camera, a Kinect / Vi-
con calibration step was executed before each recording session.
Specifically, a large chessboard pattern was positioned in 5 differ-
ent poses in order to cover the whole field of view of the camera
(Figure 3). For each pose, 8 reflective markers were attached at
predefined spots and tracked by Vicon, with the readings used to
infer the positions of all the square edges of the pattern on the co-
ordinate system of Vicon. Next, the pattern was captured by the
Kinect sensor, with the square edges automatically detected on the
RGB frame and their positions estimated on the coordinate system
of the Kinect depth sensor. Finally, the transformation matrix be-
tween the two coordinate systems was calculated using a single
iteration ICP. The average correspondence distance error across
all the calibration sessions was F¢q:5=0.82cm.

A small deviation between the Vicon ground truth data and
the 3D point cloud produced by the Kinect was also noticed in

each frame. This systematic error, defined as the average distance
between the Vicon readings and the corresponding points on the
3D point cloud, was manually estimated at E,,=2.73cm, and can
be attributed to three factors:

e accuracy of the Vicon readings
e accuracy of the Kinect readings and the intrinsic calibration

e temporal synchronization of the two streams

4.2. Experimental Results

Finally, the lower limb tracker was evaluated on all the pre-recorded
sequences of the dataset, by computing the Euclidean distance
among the detected Vicon markers on each point cloud and the
fixed points on the human model, leading to an overall average po-
sitioning error of Eoyerqu=4.6cm=+0.3cm SD. Taking into con-
sideration, and subsequently removing, the systematic error Fys
mentioned above, the algorithm’s actual average positioning error
was found to be E= Eoperaii-Fsys=1.9cm=0.3cm SD.

While there are not currently available any state-of-the-art meth-
ods targeting specifically partial-view lower-limb tracking, in or-
der to provide a direct comparison to the proposed approach, the
best accuracy results reported in similar works (3.4cm for full
body tracking [10], 1.84cm for hand tracking [24]) serve as ev-
idence that the presented method’s performance is comparable to
current state-of-the-art body-part tracking methods.

Moreover, the tracker was also tested under realistic condi-
tions in an online fashion, achieving an operation framerate of 10-
15fps, with the operation speed mainly affected by the complexity
and speed of the tracked human’s movement. An indicative suc-
cessful foot tracking sequence is presented in Figure 5.

5. CONCLUSIONS

This paper introduced a high-accuracy body-part estimation and
tracking algorithm, capable of robust performance in real-life ap-
plications, suitable for partial-view scenarios where due to limita-
tions in the depth camera viewpoint and field of view only a part of
the tracked human is visible. The algorithm builds upon modern
motion analysis techniques by combining a body part estimator
with an articulated tracker and further enhancing the limb-tracking
accuracy by adapting the shape of the utilized human model to the
observations. The algorithm is tested in a lower-body limb track-
ing scenario and achieves an average accuracy <2cm while per-
forming at 10-15 fps, on non-optimized code. Additionally, a cus-
tom real-life lower-body motion dataset, with annotated ground
truth data, is also provided for future benchmarking.

Future work may include extensive testing of the algorithm
on upper-body limbs tracking scenarios, namely arms tracking,
further enhancement of the shape-adaptation process, and GPU-
optimization of the code in order to achieve a higher processing
framerate.
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