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Abstract. The incorporation of service robots in human populated en-
vironments gives rise to the adaptation of cruise strategies that allow
robots to move in a natural, secure and ordinary manner among their
cohabitants. Therefore, robots should firstly apprehend their space sim-
ilarly with the people and, secondly, should adopt human motion antici-
pation strategies in their planning mechanism. The paper at hand intro-
duces a closed-loop human oriented robot navigation strategy, where
on-board a moving robot, multimodal human detection and tracking
methods are deployed to predict human motion intention in the shared
workspace. The human occupied space is probabilistically constrained
following the proxemics theory. The impact of human presence in the
commonly shared space is imprinted to the robot’s navigation behaviour
after undergoing a social filtering step based on the inferred walking pat-
tern. The proposed method has been integrated with a robotic platform
and extensively evaluated in terms of socially acceptable behaviour in
real-life experiments exhibiting increased navigation capacity in human
populated environments.

Keywords: robot navigation, leg and human skeleton tracker, social
costmap, human motion intension prediction, robot path planning

1 Introduction

The interest of the film industry in making movies such as the WALL-FE [2008],
Robot & Frank [2012] and many others reveals the potential for broad acceptance,
as well as comprehension of people for domestic and service robots in near future
communities. An in-depth study of these movies discloses the human’s expec-
tations about the characteristics that the forthcoming artificial agents should
retain so as to be broadly acceptable, while someone can infer that naturalness
of robots’ motion is the main attribute that renders their presence intimate to
the humans. This challenge is broadly recognized by the respective scientific
community which has already conducted a laborious research on robot motion
planning [11]. Yet, the demand for mobile robots to operate in dynamic changing
environments where humans are also involved, emerged the development of more
sophisticated motion planning strategies where human factors should be consid-
ered [0], integrating contextual representations of the individual’s presence [2].



Following this aspect, human-robot co-navigation strategies are foreseen when
designing a service robot targeted to operate in human-centric environments
[17]. Human aware navigation and planning include a significant variety of im-
plementations and, therefore, we attempt to provide a categorization based on
the methodologies utilized for the human space modelling and the navigation
methods that consider human presence. The motivation behind this taxonomy
it that these well known issues constitute the basic components of the proposed
methodology.

Human space modelling: Proxemics theory early introduced by Edward T.
Hall [5] comprised the cornerstone of human space apprehension by establishing
the theory on how individuals’ placement in space affects the quality of their
interaction. This theory has been broadly accepted by the roboticists during
last decades and embodied in various ways in the human space modelling mech-
anisms with robots. The work in [I2] represents the social zones in terms of
isocontours of an implicit function capable of describing complex social inter-
action. In more recent work, the authors in [I5] marked the human space with
a single Gaussian kernel parameterized with respect to human calculated ve-
locity differentiating thus, in the modeled space the human presence from the
obstacles; yet, this implementation was appropriate only for short term robot
motion calculations. A relevant work which capitalizes on the proxemics theory
for modelling the human personal space is the one described in [7], where used
joint oriented Gaussian functions to model human presence targeting to be in-
corporated in global path planning level. Contrary to the aforementioned works,
the human space modelling follows the notion of the proxemics theory, yet by
considering a sequence of Gaussian kernels -instead of a single one- formulated
along the estimated human paths, the amplitudes of which degrades considering
the human’s velocity allowing thus predictive long-term global path planning.
Moreover, the proposed method can be extended to multiple human tracking
and, hence, to their personal space modelling as well.

Path planning with human presence: Considering dynamic path planning,
the work in [I3] introduces a path planner that considers the presence of hu-
mans in terms of their vision field, their accessibility and their personal choices
regarding the human-robot placement. However, this system considers solely
static persons but the fast computation time of this module allows online path
replanning. Dynamic human presence during path planning is considered in [14],
where the location and movement of humans is modeled as potential fields and
the most feasible trajectory is calculated using Rapidly-exploring Random Tree
(RRT). The authors in [8] employ velocity obstacles to infer trajectories ample
to avoid humans, while a probabilistic extension of RRT based on predictive
Gaussian processes is employed in [4] and proved adequate for path planning
in dynamic environments. Similar, yet more contemporary methods are also
presented in [16] and [I6]. Luber et al. [I0] proposed a machine learning strat-
egy that employs the measurements of walking people to solve an unsupervised
learning problem. Specifically, the authors define the relative motion prototypes
and cluster them hierarchically, by exploiting a distance function that relies on



a modified Dynamic Time Warping (DTW) module. Afterwards, relative mo-
tion prototypes are used in a model selection to extract social context, which
is further used for the formulation of the cost map. The authors in [I7] intro-
duced walking motion anticipatory features that when integrated with a learning
scheme proved adequate navigation capacity to maneuver a robot around hu-
mans in dynamic environment. The paper at hand, Fig. [I]anticipates the walking
motion of the human by inserting the concept of frequently visited areas in a well
defined environment. The estimated human workspace is modeled as costmap
ample to operate in real-time applications as it is integrated both in global and
local planner level.
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Fig. 1. Block diagram describing the software components involved in the proposed
method

2 Human Presence Anticipation

2.1 Human Detection and Tracking

A basic prerequisite for human-aware autonomous robot navigation is that the
robot should to detect the people present in its surroundings. For that reason
two different human tracking algorithms have been adopted and fused in the
present worked, based on LIDAR and RGB-D data obtaining this way constant
human awareness during the robot operation, i.e. if the user is out of the field
of view (FoV) of the RGB-D sensor it will be tracked with adequate confidence
from the laser readings.

Nite skeleton tracker: Constant human detection with stationary robotic plat-
form is addressed with the NiTE skeleton tracker. To keep track of the existing
persons, which remain in the FoV of the robot’s depth camera, the detected
human IDs are shorted with respect to the returned confidence value. This in-
formation will be later used for the fusion with leg tracker. The advantage of this
modality is that it performs reliable detection with increased confidence, but it
cannot be used with moving robot.



Leg detector: Laser based human tracking is employed herein using the method-
ology introduced in [9], allowing human tracking while robot is moving. To
shortly explain this method, the laser scans are clustered according to distance
and a feature vector is extracted for each cluster using specific geometrical fea-
tures. Next, a random forest classifier is trained, where negative examples are
obtained by moving the robot in an environment devoid of people and positive
examples are obtained by setting up the laser in an open area with significant
people traffic. During inference procedure, all the detected pairs of legs that pro-
duce a high probability score are considered as potential humans. This method
produces many false positive observations and, therefore, herein we extended
this method so as to reduce false positives through a blacklisting procedure.

Fusion modality for human verification: NiTE skeleton tracker and leg
based human detection are fused to constantly keep track of the human’s loca-
tion while retaining increased awareness also when the human is absent from the
camera FoV. Specifically, a rule based fusion algorithm has been developed that
takes in to account both observations. An algorithmic explanation is outlined in

Alg.

Data: LegTracks[ ], SkeletonTracks| |, StaticMap, RobotTransformation
Result: FinalHumanPoses]| |
if RobotIsNotMoving(RobotTranformation) then
for i = 0to LegTracks.size() do
for j = 0to SkeletonTracks.size() do
if Dist(SkeletonTracks|j], LegTracksli]) > DistThreshold or
1sCloseToObStacles(LegTracks[i] , StaticMap) then
| Blacklist < LegTracks[i].ID ;

else
| LegTracks[i].conf *= (1+ SkeletonTracks]j].conf);
end
end
end
else
‘ FinalHumanPoses = getHumanPoses(LegTracks , Blacklist);
end

Algorithm 1: Nite human detection and leg detector fusion algorithm

2.2 Short-term walking paths prediction

In accordance to the theory of the human spatial experience [I], people tend to
frequently revisit regions -indoors or outdoors- that stimulate them either with
social experience or are related with specific interaction activities. Such regions
can be spots with increased human traffic, e.g. doorways, or places with seman-
tic meaning associated with the activities, e.g. a fridge in a kitchen. Based on
this theory we identified such frequently visited human positions in a domestic
environment and associated them with the target human locations. Then, we for-
mulated the prediction about the human motion intention based on the rationale



that when a person is moving s/he will probably approach one of the pre-defined
frequently visited areas. By assuming this, the cases of random wandering are
considered less probable since they constitute the less frequent walking patterns
of people with normal behaviour [3]. Having said that, the next step comprises
the modelling of the human motion intention on the robot’s workspace. Firstly,
we compute the pose deviation vector D = [D;, D; 1, Dy] as derived from the
current human position Py = (zp,yn) and the N frequently visited positions
P = [P—1,Pi—s,...,P,—n] in the environment. Note that P, = (x,y) where
x,y comprise the explicit coordinates in the map, and D; = (t,r) where ¢,7
corresponds to the computed Euclidean translational and rotational deviation
respectively. To determine the most probable frequently visited position that the
human will move towards to, we minimize the argmin(ad,X., + fd}¥,) crite-
rion where o and 3 are regularization parameters that control situations where
the modelled environment is congested, i.e with many furniture where the user
has to follow curved paths to reach a standing position. Moreover, d, and d; are
the vectors that retain the computed Euclidean distance and the rotational de-
viation of the humans’s current position from the pre-defined frequently visited
positions, respectively. The minimized values of the criterion are sorted from the
most probable to the less probable one. Relying on the assumption that when
a human walks towards a target location subconsciously selects the most short-
est path, we adopted the D* Lite path planning algorithm in order to model
the candidate human paths among the human’s current position and the N fre-
quently visited standing positions. The reason of the selection of the D*Lite is
mainly due to the fact that this approach repeatedly determines shortest paths
between the current position of the human and his/her goal position as the edge
costs of a graph change while the human moves towards the goal position, allow-
ing thus fast replanning ample to capture the unexpected changes in human’s
course. For each point that belongs to human path, an oriented Gaussian ker-
nel is centered therein, the parameters o, and o, of which, model the personal
space of the human in accordance with the proxemics theory; this results in a
sequence of partial overlapping kernels. The amplitude A of the first Gaussian
kernel in the sequence is reverse proportional to the values of the minimization
criterion, indicating that the paths with less probability to be followed by the
human have diminished weights. Additionally, the amplitude A of each kernel in
the path decreases as the points in the path fend off the human current position
and the degradation step is normalized to the total number of the calculated
points in the path. This cycle is repeated anytime a human observation is re-
ceived and due to the simplicity of the calculations and the fast execution rate
of the D* algorithm, instantaneous estimations about the human motion are
obtained anticipating thus the person’s presence in the robot’s workspace. To
avoid unnecessary computational burden, in cases that human is standing still
for a specific time i.e. 2secs, his/her presence is modelled with a sole Gaussian
kernel.



(c) (d)

Fig. 2. a) Static map with obstacle layer where the human is detected in the middle
of room and treated as obstacle, b) inflation layer, ¢) human layer with static human
detected and d) human layer with moving human and predicted path

2.3 Human anticipation cost-map modelling

Following the aforemention methodology the anticipation of the human’s pres-
ence within the robot’s workspace, in terms of ROS infrastructure has been
represented as separate costmap layer. Therefore, the existing costmap layers
considered in our method are outlined as follows:

Static map layer: Represents the metric map, separating the obstacles from
the free space and defines the width and the height of other layers.

Obstacle layer: Tracks the obstacles as observations obtained by the sensor
data and marks them or clears the space by raytracing.

Inflation layer: Inflation is the process where the cost values decay while mov-
ing from obstacle cells to free cells. In this layer, the costmap is quantized with
specific symbolic zones, i.e lethal (actual obstacle), inscribed (robot footprint in
collision), freespace and unknown. All the costs are assigned depending on the
distance from a lethal cell and decays to the free space cost.

Human layer: Depending on the observations of the human tracking module
and the values of the above layers, extra costs are computed and formulated as



final layer to the total costmap. The human layer retains the lower priority com-
paring to any other layer, since the robot firstly needs to avoid collisions, then to
produce paths, and if possible to be also aware of the social cost of these paths.
Initially, the human layer is inferred given the position, orientation and velocity
of the human in space. If no human is detected, then no layer is generated. If the
velocity of the detected human is low, then static human is assumed, and, thus
static Gaussian kernel of costs is computed and superimposed to other costmap
layers, centered in the detection coordinates. In situations where human velocity
is above a threshold (i.e 2m/sec experimentaly defined herein compensating the
glittering effect of laser measurements)then short-term walking path prediction
is enabled as described in Sec. 2

3 Methodology Evaluation

3.1 Implementation details

To facilitate autonomous robot navigation, specific components are required to
be present, each of which is briefly discussed herein aiming to provide the means
to the reader to reproduce the proposed method. For the metric mapping which
is responsible to provide the geometrical representation of the robot’s surround-
ings, a Gmapping implementation has been selected, since map construction
slightly impacts on the method. To keep track of the robot’s pose within the
explored environment an AMCL localization method based on LIDAR scans has
been adopted. The last required component is the path planning implementation
which is responsible to navigate the robot from a current pose to a target lo-
cation. The utilized global planning implementation is D* Lite algorithm, while
for the local planner the default Dynamic Window Approach suitable for short-
wheel-axis differential platforms has been utilized. A diagram illustrating the
connectivity among the aforementioned modules and the novel human presence
anticipation one is exhibited in Fig.[l} The hardware setup on which the proposed
method has been implemented and evaluated comprises a Turtlebot2 differential
robotic platform equipped with an Asus Xtion PRO LIVE RGB-D sensor and
a Hokuyo URG-04LX scanning laser rangefinder. The laser is placed on the top
plate of the platform in a front facing orientation taking advantage of its 2700
FoV. The Asus Xtion is placed in the middle of the top plate of the platform
yet, slightly lifted in the vertical axis to obtain better human view. The onboard
computational unit is a notebook equipped with an Intel® Core™™ i7-3632QM
CPU operating at 2.20GHz with 8GB RAM.

3.2 Social Acceptable Behavior Assessment

For the evaluation of the robot’s ability to retain socially acceptable behaviour,
four different metrics already established in the community [I5] have been uti-
lized. However, these metrics have been extended to consider also moving human
instead of a static one and the referenced time duration T corresponds to the
time interval that the robot needs to navigate from its current pose to the target
one:



— M;: The mean distance D,,¢qn, among the moving human and robot which
is computed in the the entire navigation process.

— Ms: The time spent in areas associated with the human personal zone

— M3: The social cost which indirectly models the human discomfort by com-
puting mg = Zz;l C'sydy, where C's is the social cost of the cell where the
robot’s footprint is located and d; is the duration that the robot operated in
that cell. The sum of this product declares the overall time the robot spent
within the human personal space during its navigation and indirectly models
the human discomfort factor.

— My: Total navigation time needed for the robot to reach the desired goal.
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Fig. 3. a) M; mead distance from humans in meters, b) M> total time spent in human’s
personal zone, ¢) M3 social cost and d) My total navigation time

3.3 Experimental Results

The method evaluated in three different test cases namely, crossing, parallel and
opposing direction movements among human and robot, while has also been
compared with two other methods, no human aware navigation (ROS native
implementation) and modeling of human presence with static Gaussian kernel
model [15]. Each method underwent 30 repetitions for each scenario ,totaling to
270 experiments. The indoor area where the experiments have been conducted



corresponds to 35m? approximately, ensuring enough space for robot and human
co-navigation. The area consists of three doors which have declared as the fre-
quently visited regions of the space and were considered for the human motion
intention prediction. The results of the experiments are illustrated in Fig. |3| for
each scenario, indicating superior performance of the proposed method when
compared to the rest two methods. In general, our dynamic approach in the
M, mean human-robot distance achieved in total 2.21m, while static human
model and pure navigation achieved 1.92m and 1.71m. This result is directly
association with the fact that the time the robot spent in the humans personal
zone, our dynamic model scored a mean of 0.7sec, while the static human model
and the pure navigation approaches scored 2.49sec and 4.17sec respectively. In
M3 metric, social cost calculated from the previous measurements, the dynamic
model scored 0.139 units, whereas static human model 0.393 and pure navigation
achieved 2.029 units, respectively. Finally, the last metric My does not measure
the social behavior of the robot, however is a navigation performance indicator of
the robot, where the dynamic human model achieved 31.4sec, the static human
model and pure navigation scored 33.9sec and 34.2sec, respectively exhibiting
thus, that the proposed method retains better social behavior and minimum
robot travel time as well. This occurs due to the prediction of human motion
and the earlier selection of the correct path that the robot needs to follow. The
best results were achieved in the scenario where human and robot followed paral-
lel with same direction paths, where both the competitive models had achieved
high social scores. That was expected since there is a lot of overlap between
human and robot path, however the proposed method successfully maintained
better social behavior.

4 Conclusions and Discussion

In this work a human motion anticipation strategy has been introduced suitable
for real-time robot navigation in human populated environments. The human
presence in the robot’s workspace is perceived by fusing multimodal perception
modules, while the human walking intention is modeled based on the theory of
the human frequently visited areas and the computation of probabilistic human-
like paths. The predicted human presence in the robot’s workspace is facilitated
by adding a separate human-layer in the navigation framework which is parame-
terized so as to operate in real time scenarios where mutual or unilateral motion
of human and robot is observed. The ability of the proposed method to preserve
social acceptable behavior has been evaluated with a robotic platform in a real-
life experiments where the designed methodology exhibited remarkable results.
In our future work, we plan to extend the experimental procedure to consider
multiple humans in the explored environment.
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