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Slippage Detection Generalizing to Grasping of
Unknown Objects using Machine Learning with
Novel Features
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Abstract—Real-time grasp stability is based on successful
slippage detection. In this work, we consider slippage detection
as a binary problem (slip, stable) and we propose a novel
set of temporal and frequential features, extracted from force
norm profiles and collected during reliable ground truth labeling
processes, finally employed within machine learning classification
techniques. Classification performance of the proposed scheme,
with respect to its success and generalization ability, is assessed
systematically utilizing different performance metrics that clarify
class predictions as opposed to most of the reported works. We
show that our proposed feature extraction method improves clas-
sification performance over the commonly used feature sets, even
when trained with one surface, and generalizes successfully to
unseen ones. The trained classifier is tested on a completely new
task and object, for real-time slippage detection, showing high
detection accuracy. Finally, the classifier is tested in a different
experimental layout with a different force sensor. Experiments
are conducted on unseen surfaces for a variety of sampling
frequencies, for both translational and rotational slippage, with
the proposed approach showing fast and accurate detection in
all cases.

Index Terms—Slippage Detection, Perception for Grasping and
Manipulation, Learning and Adaptive Systems

I. INTRODUCTION

OBOTS have revolutionized our everyday lives improv-
ing efficiency, productivity and precision, with appli-
cations in industry, medical or service assistance e.t.c. As
technology advances, robots will be required to safely interact,
grasp and manipulate objects, so as to complete desired tasks.
Grasp stability maintenance is one of the human dexterities
that is ultimately desirable but also difficultly achieved.
Humans are able to preserve grasp stability, even of un-
known objects, regulating the applied force for successful lift-
ing, handling and manipulation accordingly. They achieve that
by detecting skin deformations and micro-vibrations during
the occurrence of a tactile incident (touching, lifting, sliding,
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placing), as they possess skin receptors (fast adapting (FA-I,
FA-II) and slow adapting (SA-I, SA-II)), which respond to
frequencies mainly up to 400Hz and have diverse stimulation
patterns [1], whose combination facilitates the detection of
different tactile events.

In a similar manner, if robots could detect slippage in real
time, it would be a useful step towards stable grasping of
objects. Two main approaches to slippage detection can be
distinguished [2]. On one hand, the physical properties of the
contacting surfaces are exploited, while on the other hand,
vibrations or patterns related to slippage are considered.

For the first approach, most of the related works attempt
detection utilizing the friction cone notion, where if the ratio
of tangential to normal force components is higher than the
friction coefficient, the contact is slipping. This approach
is extremely effective and accurate, but it requires exact
knowledge of both contact normal and friction coefficient, that
are usually unknown or uncertain. Song et al. [3] and Ajoudani
et al. [4] estimate the friction coefficient through exploratory
motions before grasp establishment. Wettels et al. [5] assume a
conservative friction coefficient of © = 0.5, compute tangential
forces by applying Kalman filtering to pressure data acquired
from tactels and achieve stability by using them in a ratio to
adjust the grip. Vina et al. [6] attempt to adaptively control
pivoting of an object based on friction cone considerations,
while having estimated the translational and rotational friction
coefficients. What is common in the majority of these works,
is that they require an initial exploratory phase to estimate
the friction coefficient before attempting their task, while 3D
force measurements or their estimations have to be available
for the friction cone analysis.

For the second approach, patterns embedded in the sensor’s
measurements or its frequency content are considered. Some
researchers use empirical thresholds [7]-[11], while others
apply machine learning algorithms [12]-[17]. In the first
category, Stachowsky et al. [7] detect slippage based on the
covariance matrix of the input signals from two fingers, while
Romano et al. [8] use high-pass filters on tactile measurements
and empirically set a threshold to designate slip. Finally, Su
et al. [9], Cordella et al. [10] and Kaboli et al. [11] use
the tangential force’s derivative as a slippage indicator and
compare it to a constant value. When it comes to approaches
deploying empirical thresholds, fine tuning depending on the
grasping task is a prerequisite and the method’s generalization
ability is at stake, since the need for a new threshold arises
along with a new task.
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To address some of the above issues, machine learning
approaches have been adopted, as there is no need for ex-
plicit modeling of the physical properties of the contacting
surfaces. Bekiroglu et al. [12] evaluate the probability of
grasp stability based on the output of classifiers trained on
combined information from the tactile sensing array, the hand,
the object and the grasp. Veiga et al. [13] detect slippage
by comparing SVM and Random Forests trained with three
different feature approaches, that examine the phenomenon’s
dependency on current and past data acquired by the BioTac
sensor measurements. Goger et al. [14], Schoepfer et al. [15]
and Meier et al. [16] use short-time Fourier transform (STFT)
to estimate the frequency content of the input signal and detect
slippage by using classification. Roberge et al. [17] take the
power spectral density (PSD) of the tactile dynamic signal to
perform unsupervised feature learning and create a dictionary
of sparse representations, which is used by an SVM to classify
slip instances. However, most of these methods do not test
their approaches in untrained grasping tasks and therefore may
require model retraining for application to a different grasping
task than the one being trained on. When this is not the case
([12], [13]), classifiers reduce their accuracy.

Despite that existent approaches present promising results,
they do not assess the classification performance in a sys-
tematic way, but rather focus on incorporating slippage as
part of their grasping strategy. This is to be expected, since
grasp stability is usually the ultimate goal, yet it does not
facilitate the establishment of a common frame of reference
to accurately evaluate a slippage detection methodology and
quantify its success and generalization ability. Although it is
not unusual to use different performance metrics depending
on the problem at hand, solely reporting one of them does
not give a well-rounded estimation of performance. This is
due to the fact that most metrics used, either do not account
for imbalances in class prediction ([12], [14], [16], [17] only
report accuracy), or are biased towards successful recognition
of either the positive ([13] only reports Fi.ore) OF nega-
tive class, thus making comparison among methods difficult.
Additionally, apart from those who use off-the-shelf sensors
e.g. BioTac and OptoForce, most works use custom-made
tactile arrays, which also does not help establishing a common
ground for comparison. Finally, to our knowledge, except for
[13] and [17], no work has addressed issues of generalization
with respect to unknown surfaces effectively and in detail,
either online or offline. To evaluate its efficiency, slippage
detection should be addressed and evaluated separately and not
be interlaced with reaction strategies, since a well-performing
detection can lead to successful grasping with the most simple
reaction, whereas the most sophisticated reaction may fail with
an uncertain detection scheme. Our main goal is to employ
machine learning on an enhanced set of features to address
the slippage detection problem isolated, presenting analytical
confusion matrix results, which show that this approach can
lead to a robust learner, able to predict slip and stable samples
equally well.

The contributions of this work can be summarized as follows:

o Our methodology introduces a feature vector from contact

force norm profiles with a novel composition, containing

both temporal and frequential features, leading to im-
proved performance and generalization on unseen objects,
without the need to cover more than one surface during
training.

o The proposed approach is evaluated in terms of classifi-
cation accuracy and raw performance metrics rather than
being incorporated in a grasping scheme, thus providing
a basis for comparison among methods for slippage
detection-related tasks.

o The classifier with the proposed features trained on one
surface for translational slippage is transferable to another
experimental setup utilizing another sensor from the one
used for training, accurately detecting both translational
and rotational slippage on unknown surfaces, even with
reduced sampling frequency.

II. PROPOSED SLIPPAGE DETECTION STRATEGY

We consider slippage detection as a binary problem, con-
sisting of two distinct classes (slip, stable). Machine learning
techniques seem the most suitable approach for such classifi-
cation problems, but require an appropriate design in order to
perform well. Fig. 1 depicts the methodology followed in this
work. Initially, the norm of force measurements is retrieved by
a predefined window (buffer), of length w. This 1 X w input
force profile, or hereby called prefeature, is computed in an
attempt to wrap up its enclosed information before extracting
features from the input force signals. This prefeature & = |f]
is adopted by most similar approaches [14]-[16] and is also
preferred in the current approach due to its compact informa-
tion representation, simplicity and availability. Additionally,
¢ is more general, since it doesn’t explicitly require 3D
force readings (available in the current setup from OptoForce
sensors) and can be deduced from e.g. pressure distribution
from tactile sensors as well. From the prefeature, a collection
of time and frequency domain features is extracted to form the
corresponding feature vector. Then, a normalization procedure
takes place, followed by a feature selection-ranking process
and finalized by a dimensionality reduction, which produces
the input vector for training of classifiers. More details on
each step of the methodology are described in the following
subsections.

A. Feature Extraction

Traditionally, slippage is detected through vibrations di-
rectly related to the phenomenon, by computing the frequency
content of the force input signal and particularly the amplitude
of its Fourier transform (|F'FT|) [14]-[16]. In general, force
measurements strongly resemble electromyograms (EMGs) or
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Fig. 1: Followed methodology
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TABLE I: Feature Extraction o (-)

D,R | Features Explanation #
— Initial signal: x z = [z1,22,...,TN]
Integrated N
IS = ;. 1
Signal (IS) 5= lonl
Mean Absolute
MAV = LIS 1
Value (MAV) N
MAV Sl
oM AV:L"}{’; MAVSLP;, = MAVi, — MAV; 1
T,Pp Simple Square _«N 2
Integral (SSI) S5 =301 7, 1
Variance (VAR) | VAR = 1155871 1
Root Mean
MS = /L 8SI 1
Square (RMS) RMS ~ 35
Waveform —
Length (WAVL) WAVL = SN epg1 — an 1
. . 1, if © > thres
— f K x) = ] -
Sign of input x sgn(x) { 0. otherwise
Zero Crossing ZC =N sgn(znzni1) N 1
(ZC) |Zn — Tnt1| > thres |
Slope Sign N_
Chinge (650 | 55C = 5 son((zn = 2n1)(@n = nt1) 1
TP Willison
Amplitude WAMP = Zi};ﬁ sgn(|zn — Tnt1]) 1
(WAMP)
gi‘s"%‘am HIST = histogram(z), number of bins b= 3 3
AutoRegressive ARCO = [ay,...,a4,...,ap)], s.t.
EP Coefficients Tp ==Y 0| QiTn_i+ wn, 3

(ARCO) where w,, white noise and p = 3 here.
Fast Fourier
Transform (F) F = YNt apei2mhn/N PR, = F2,

and its Power
Spectrum (PF)
Mean Frequency

k=0,...,N—1

MNF = M, 1;pF;/sM, PF;,

(MNF) where f; frequency at bin j
Median MDF M M
Frequency PFj= > PFj=4 3 PF 1
(MDF) j=1 j=MDF j=1
Modifi
odified MMNF = M, f;AF;/$M, AF;,
EP Mean Frequency where f; fre ueJnc ét bin j ’ !
: (MMNF) J equeney ’
Modified
. MMDF M M
Median S AR, = > AF; = % > AF; 1
Frequency j=1 j=MMDF Jj=1
(MMDF)

Real part (RF)

and Imaginary RF =R{F}, IF =S{F} 2(w/2+1)
part (IF) of FFT
Mean Value
MV) MV=z=L"N o 1
Standard h

STD=0=2% "N (2, —7)2 1
Deviation (STD) 7=xTim@ -7
I(\f/‘[‘;'x“‘)“"‘ MAX = maax(z) 1
Range of - _
x-axis (RNGX) RNGX =N L
Range of .

TG y-axi (RNGY) RNGY = max(x) — min(x) 1
Median (MED) MED = median(x) 1
Hjorth HJORTH = %4 /74
Complexity a’ . 1
(HIORTH) where o0y = STD(&) and 049 = STD(&)

Shannon’s
Entropy SENTR = 3!_, piloga(ps), 1
(SENTR) where p; = HISTi /b, b number of bins (3 here)
Skewness (SK) SK=4+35N,(z; —3)/0° 1
Autocorrelation ACORLy, = Zn:jk Tptrcong(xn), w
(ACORL) fork=1,...,N
Amplitude (AF) - -
AF = RF?Z + 1FZ,
EG zl;nc::]l;};ase (PF) PF = arctan(1F/rF) 2(w/2+1)
All features gathered together into one vector { = o(-) 3w+ 33

other highly fluctuating signals in time. Assessing the signal’s
characteristic entities may reveal embedded information, con-
nections and patterns, otherwise disguised and lost and which
may be present in both the frequency and time domain.
Vibrations may help detect slippage, but that depends on
the sensor and is related mostly to the contacting material
of the sensing device, as well as the sampling period, the
spatial resolution, the sensitivity and the material’s hysteresis.
Thus, techniques which are applicable for one type of sensor

may not be suitable for other types. Except for human studies
on the band of frequencies potentially related to slippage
[1], no apparent relation between various kinds of surfaces
and slipping frequency is reported. This could be justified
by the fact that the characteristic frequencies may not be
the same for every slipping material, but may be related
to the contacting surfaces and their textures, e.g. ripples of
human fingerprint compared to smooth elastic force sensor.
Hence, in order to enrich the frequency features, which may
reveal repeated values or patterns related to slippage, we
consider utilizing time features as well, which may uncover
specific attributes of the phenomenon, such as similarity to
previous values or characteristics of the signal’s amplitude.
To a human equivalent, frequency analysis could resemble the
sensitive-to-vibrations receptors, while time analysis could be
relevant to deformations such as pressure, stretch, twist etc.
The motivation for selecting both time and frequency domain
features is that their combination may reveal slippage related
attributes more reliably.

The feature extraction process involves the computation of
representative temporal and frequential features of the selected
prefeature ¢ and is mainly influenced by Phinyomark et al. [18]
(P) and Golz et al. [19] (G). Table I depicts how the feature
function o(-) computes the temporal (T") and frequential (F')
features (K = 3w + 33 in total) selected for evaluation.
The leftmost column shows the domain (D : {7, F}) and
reference (R : {P,G}) for each feature respectively. The
feature extraction is performed on the prefeature ¢ resulting
in the feature matrix Z = o(£), € R*. Notice that temporal
features are populated by autocorrelation (ACORL), whereas
frequential ones are mainly represented by Fourier (FFT)
components. ACORL is related to the power spectral density
via the FFT and intuitively describes the similarity between
observations as a function of the time lag between them.
Both ACORL and FFT account for repeating patterns, such
as the presence of a periodic signal obscured by noise. If the
fundamental frequency in a signal is missing, ACORL can still
find it by its harmonic frequencies, while FFT cannot without
special processing. Evidently, both are useful and valuable
representations, thus included in the feature vector.

To assess the importance of each domain, 4 different feature
sets are created, namely one containing only the commonly
used Amplitude of the FFT (hereby denoted as AFFT in the F
domain of G), one containing all frequency features (denoted
as FREQ and including every feature in the F domain), one
containing all time features accordingly (TIME) and lastly, one
combining all the temporal and frequencial features (BOTH).
It is shown that the 2 latter cases, i.e. the time domain features
alone (TIME) and their combination with the frequency ones
(BOTH), perform and generalize better than the AFFT, which
is the most widely used in the literature [14]-[17].

B. Normalization, Feature Selection & Dimensionality Reduc-
tion
After the feature extraction process, the resulting feature

matrix Z is normalized by taking the z-score of each feature,
namely subtraction of the mean and division with the standard
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deviation over all n inputs (zscore(z;;) = %), resulting
in a normalized feature matrix N = zscore(Z), € RF.
The purpose of normalization is to calibrate the importance
of the feature dimensions and avoid giving too much or
too little attention to some of them, resulting in defective
training. Subsequently a feature selection-ranking is performed
on the normalized feature vector /N, based on mutual variable
information [20] (association metric searching for relationship
between two random variables) and the s best performing
features of N are kept, forming a matrix H = sel(N)[1...s], €
R?®. The rationale behind feature selection is that keeping
the most prevailing features related to slippage reduces com-
putational complexity. Finally H is processed by principal
components analysis (PCA), a dimensional transformation and
reduction algorithm, forming a matrix ® = pca(H)[1...p], €
RP, by keeping p components of P.

Finally, if the forces of the testing set significantly differ
from those used for training, the prefeature | f| could be nor-
malized by dividing with the mean of stable (during training)
or with the desired contact force (during real-time) to result
in a close-to-zero mean signal and alleviate the method from
any dependency on training data range.

C. Machine Learning Classification

Hidden
layer 1

Hidden
layer 2

Input Output

layer layer

h11 h2.1

“Jan _sigmoid
> - g slip/
stable

Fig. 2: MLP structure

In supervised learning, given a dataset containing the feature
vectors and their labels, an algorithm is trained to infer a
mapping function of the feature space. The trained model
can then be used to classify new input into one among the
classes. For our case, as soon as ® is computed, it is used
along with the corresponding labels as input for the training.
A Neural Network or else Multi-Layer Perceptron (MLP) is
chosen as the classification model, for its efficiency in highly
dimensional problems. Fig. 2 shows the chosen MLP structure,
which is composed of two hidden layers with 10 neurons
each. The training procedure has been performed using the
Python programming language and the Scikit-learn library
[21], using the Limited-memory BFGS solver and default
remaining parameters.

III. EXPERIMENTAL EVALUATION
A. Experimental Setup

Experiments were conducted using a KUKA LWR4+
robotic manipulator equipped with a Shadow Smart Grasping
System (SGS) Robot Hand and Optoforce 3-Axis force sen-
sors (OFS) attached to its finger tips. ROS [22] was used for
communication, commanding (joint velocities at 1 ms intervals)

TABLE II: Surfaces used for training and testing

Surface Surface ID Surface Surface ID

Num (SN) | (SID) Surface || Num (SN) | (SID) Surface
0 Glossy Blue . 3 Cork Paper
1 Soft Blue 4 Banana Paper
2 Felt 5 Sandpaper

and recording of data, adjusting the force sensors’ sampling
rate at their maximum 1kH z, without filtering.

For the dataset collection, six different surfaces were used
and were fixed symmetrically on two cylindric bottles by sets
of three surfaces per bottle, as shown in Fig 3a, so two of the
three fingers can be in contact with the same surface during
a pinch grasp (Fig. 3b). Table II shows the surfaces used for
training and testing in an order of ascending roughness.

In order to collect sufficient, but also quantitatively bal-
anced stable and slip force samples, the robot manipulator
was commanded to perform a trajectory of equally timed
moving (slip) and stationary (stable) phases. More specifically,
the bottle was fixed on a table, an initial pinch grasp was
established with the desired surface and a fixed trajectory
along the length of the object was performed, moving upwards
and downwards with respective pauses. This was done for
all 6 surfaces, for 3 different sliding speeds (3, 1.5, lem/sec)
and for 2 different initial grasping forces (1N, 2N), resulting
in 72 datasets acquired from both fingers. This experimental
setup facilitated the labeling procedure, since when the robot
is commanded to move or stay, it will almost immediately
slide or stay on the surface respectively, thus eliminating the
need for manual labeling along with the risk of errors during
this procedure.

Every dataset was passed through a moving window of
length w, from which the corresponding feature vector of
length £ = 3w + 33 was extracted. In brief, for each dataset
d; of the n datasets, a moving window of length w is taken,
shifting m steps each time until length [ of d; is reached,
resulting in a matrix of n X ((I —w + 1)/m) x w dimensions.
The process described in subsection II-B is performed on this
matrix, transforming the data with a pipeline of normaliza-
tion, feature selection, dimensionality reduction and classifier
training steps. For this work, dataset number is n = 72
corresponding to approximately 10000 samples, which are
generated using a window of length w = 1024 shifted by
m = 10. Moreover, features selected are s = 1000 and PCA
components kept are p = 20, while fine-tuning of classifiers’
hyperparameters is considered unnecessary since it heavily
depends on the chosen classifier.

(a) Surfaces of
the experiments

(b) Validation and data (c) Setup for real-time
acquisition experiment

Fig. 3: Setup for validation and real-time experiment
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In the following, Section III-C presents results from six
classifiers, where each one is trained on one of the surfaces
presented in Table II and tested on the remaining ones. In
section III-D results show the performance of every classifier
trained on two up to five out of the six surfaces and tested on
the remaining, unknown ones.

B. Evaluation metrics

Successful recognition of a slip sample is a True Positive
(TP), while its misclassification as stable is a False Negative
(FN). Accordingly, successfully classifying a stable sample is
a True Negative (TN), while mistaking it as slip is a False Pos-
itive (FP). The corresponding rates are reported as TPR, FNR,
TNR and FPR, where TPR = 77-v, FNR = 775,
TNR = %, FPR = %. Thus, given the equally
balanced classes, the accuracy is acc = IPRATNE Reguylts
in Tables III-V demonstrate the classification performance of

each class (TPR, TNR).

C. Evaluation of training with one surface

Initially a classifier ¢;; is trained on each surface ¢ € 0, ..., 5,
for each feature set j € 0, ..., 3 (AFFT, FREQ, TIME, BOTH)
and the classification performance is evaluated, reporting an-
alytic results for TPR and TNR as well. The performance of
training on surface ¢ with feature set j and testing on surface
k is denoted by ci»“j, where k£ = i corresponds to evaluating
performance on the same surface as in training, hereby called
self-accuracy (Fig. 4), while k& # i relates to performance
on previously unseen surfaces, hereby called cross-accuracy
(Table III).

Fig. 4 shows the ct ; performance of each surface i on itself,
via a 5-fold cross-validation, to realize how consistently each
classifier performs on new samples of the already seen surface.
On the x-axis, each group represents a surface ¢ and each
bar corresponds to a feature set j. Every bar is split in 4
sub-bars, representing from bottom (blue) to top (red) TPR,
TNR, FNR and FPR respectively. Thus, the sum of TPR and
TNR on the diagram (already scaled by 0.5) corresponds to
the classification accuracy. Observing the bars of each group,
it is clear that performance improves towards the rightmost
columns, namely FREQ, TIME and BOTH have on average
a 4%, 7% and 7.5% better accuracy than the most widely

100%

80% -

«» 60% [ B FPR
[J FNR
Il TNR

Il TPR

Metrics

40%

20% [
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oM O, jleyea) O o oM =Om
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BeEo ExEo ExEo Exfo MxEo hxEo hxEo
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0-0 1-1 2-2 3-3 4-4 5-5 AVG

Fig. 4: Performance of each trained surface on itself 5-fold
cross-validated

TABLE III: Mean performance and standard deviation of
each trained surface tested on all remaining surfaces

[ SN ] | AFFT | FREQ | TIME | BOTH |

0 TPR | 0.63(£0.21) | 0.79(£0.06) | 0.87(f0.06) | 0.91(£0.03)
TNR | 0.94(40.05) | 0.96(£0.01) | 0.91(40.05) | 0.93(£0.05)

1 TPR | 0.96(40.02) | 0.94(£0.02) | 0.93(10.04) | 0.95(£0.02)
TNR | 0.69(40.16) | 0.85(£0.03) | 0.94(40.04) | 0.87(£0.04)

2 TPR | 0.94(40.05) | 0.97(£0.02) | 0.97(10.02) | 0.97(£0.02)
TNR | 0.69(£0.10) | 0.74(£0.07) | 0.80(40.09) | 0.79(£0.12)

3 TPR | 0.59(40.22) | 0.83(£0.06) | 0.90(10.04) | 0.94(£0.01)
TNR | 0.95(40.04) | 0.97(£0.02) | 0.93(40.05) | 0.98(£0.01)

4 TPR | 0.96(40.01) | 0.88(£0.03) | 0.97(10.02) | 0.93(£0.03)
TNR | 0.60(40.14) | 0.73(£0.15) | 0.82(40.09) | 0.94(£0.01)

5 TPR | 0.88(40.05) | 0.90(£0.04) | 0.96(40.03) | 0.92(£0.04)
TNR | 0.72(£0.15) | 0.85(£0.09) | 0.82(40.13) | 0.97(£0.02)

Avg TPR | 0.83(40.15) | 0.89(£0.06) | 0.93(40.04) | 0.94(£0.02)
TNR | 0.76(+0.13) | 0.85(+£0.09) | 0.87(+0.06) | 0.91(4+0.07)

used AFFT features, while this behavior seems independent
of training surface.

Table III shows the cfj performance of each surface ¢ on
all remaining surfaces k # i, to realize how generalizable
each model is even after training on only one surface. Each
line reports the average and the standard deviation of TPR
and TNR. It is obvious that FREQ, TIME and BOTH features
have on average 8%, 10.5% and 13% better accuracy than
the commonly used AFFT features, with 7%, 9% and 9%
smaller standard deviations respectively. Therefore, the basic
observation from self-accuracy reports, that the FREQ, TIME
and BOTH feature sets consistently perform better, holds
for unseen surfaces as well. Considering this behavior, we
choose BOTH feature set as the proposed approach for the
rest of the paper, due to its improved performance compared
to isolated FREQ and TIME sets, achieving on average TPR
and TNR of 94% and 91% respectively, trained on 1 surface
and tested on 5 unseen surfaces. Moreover the FNR is low
(6%), namely any missed slipping occurrences, which may
result to delayed or unsuccessful detection and subsequently
reaction, are substantially reduced.

D. Evaluation of training with more surfaces

The promising results displayed by the proposed set suggest
that the representation on both time and frequency feature
spaces may potentially lead to a model with powerful general-
ization ability. Therefore, the procedure for cross-accuracy is
repeated with 2 and more surfaces, until all but one are used for
training, to assess how the surface variety impacts performance
and which feature set is consistently favorable for slippage
detection. The sampling is adjusted appropriately, so as to keep
the training size and class distribution the same, regardless of
the number of surfaces. Table IV shows the corresponding
results, where the same behavior can be noticed as far as
feature sets are concerned. A significant observation is that the
proposed features do not need to cover more than one surface
during training, since the observed average improvement of
the already high accuracy, as the number of training surfaces
increases, is only around 3%. In contrast, in the -usually
adopted by the literature- AFFT features, accuracy improves
considerably (around 8%) as more surfaces are introduced
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TABLE IV: Mean performance and standard deviation of
slippage detection after training with more than one surfaces
and tested on the remaining surfaces

[#surf | [ AFFT | FREQ | TIME | BOTH |
| TPR | 0.83(£0.15) | 0.89(0.06) | 0.93(£0.04) | 0.94(£0.02)
TNR | 0.76(+0.13) | 0.85(+0.09) | 0.87(+0.06) | 0.91(0.07)
5 TPR | 0.84(£0.13) | 0.90(£0.04) | 0.95(+0.02) | 0.95(£0.02)
TNR | 0.84(+0.08) | 0.91(+0.07) | 0.91(£0.07) | 0.95(0.04)
B TPR | 0.85(£0.11) | 0.91(£0.03) | 0.96(£0.02) | 0.96(L0.01)
TNR | 0.87(£0.06) | 0.93(+0.05) | 0.94(40.05) | 0.97(:-0.03)
A TPR | 0.84(£0.13) | 0.91(£0.03) | 0.95(+0.01) | 0.96(+0.01)
TNR | 0.87(£0.07) | 0.94(+0.04) | 0.93(40.05) | 0.96(+0.03)
p TPR | 0.91(£0.10) | 0.01(+0.04) | 0.96(+0.02) | 0.96(£0.01)
TNR | 0.82(+0.11) | 0.94(+0.05) | 0.89(40.07) | 0.96(1-0.04)

during training, without even surpassing the worst performance
(FREQ, 1 surface, acc = 88.5%) of the other feature sets.

This result indicates the superior generalization ability of the
proposed features as compared to the existing sets, since the
phenomenon is successfully recognized even with one surface.
It is believed that this is due to the addition of time-based
features that can capture patterns related to the latent, temporal
nature of the phenomenon, thus acting complementary to the
frequency-based ones. Frequential patterns seemingly require
several surfaces to manifest, whereas time-based ones may be
present and captured even from a single surface. The trade-off
between increased complexity of additional training surfaces
and performance improvement is something that should also be
taken into consideration. The generalization ability and lack of
complexity demonstrated in this section leads to the adoption
of training the MLP with one surface (SN = 0) and the
proposed features and this model is used throughout the rest
of the paper.

IV. REAL-TIME SLIPPAGE DETECTION

A real-time experiment is performed to evaluate the pro-
posed methodology on a completely different setup and unseen
object, compared to the ones used for training. The SGS is
holding an empty plastic cup with an extra weight attached to
the cup’s base with a string (Fig. 3c). The string is loose at
the starting position, so the extra weight is not exerted until
the upward hand motion causes the extra weight to also be
lifted (P1). This dynamic load causes the cup to slip without
falling (P2), since the cup is conical and acts as a wedge. Sub-
sequently, the downward motion causes the hanging weight to
touch the table and a stable grasp is reestablished (P3). Finally,
the cup is repositioned manually (P4) and the experiment is
repeated. Fig. 5 shows the norm of measured force (blue line)
|f| and the output of the MLP classifier trained on 1 surface
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Fig. 5: Predicted output of classifier trained on 1 surface

(outl) with the proposed feature set (red dots), along with a
time axis partitioning of the different phases (P1,P2,P3,P4 -
vertical dashed lines). It can be observed that the transition
between different phases is correctly and timely detected; e.g.
transition from P1 to P2, corresponding to the exact moment
of load exertion, is instantaneously perceived. Moreover, as
shown in Fig. 5, the classifier successfully recognizes the P1
and P3 stable states (weight lying on table) and the P4 slip
state (manual repositioning). During P2 the pendulum-weight
is swaying, which may cause alternations between slipping
and stable phases, a behavior manifested in the output of the
classifier. Note that, particularly during P2, there is no clear
way to acquire the ground truth label. Notice also that the real-
time latency of the implemented methodology was measured
around 60ms at worst, so a real-time conservative window
shifting of m = 100 is chosen, corresponding to 100ms
between consecutive classifier’s answers. The aforementioned
observations indicate that a fast and accurate detection is
achieved by the proposed method when grasping an unknown
object, anticipating grasp stability even with a simple reaction
strategy.

V. VALIDATION WITH A NEW EXPERIMENTAL SETUP

To further support our claim of generalization and transfer-
ability, the selected classifier, trained on 1 surface with the
Optoforce dataset, is tested with a new experimental setup.
In particular, the KUKA LWR4+ robotic manipulator, with
an ATI Mini40 F/T sensor mounted on its end-effector (Fig.
6a), is commanded to move along the contacted surface,
performing 2 translational motions (downwards and upwards)
and 2 rotational motions (rightwise and leftwise), with equally
timed moving (slip) and stationary (stable) phases, with sliding
velocities of 2c¢m/sec and 0.1rad/sec. During motion, a
desired normal force of 1N and 1.5V is maintained via a
hybrid force/impedance control. A sampling rate of 1K Hz is
used, as well as a low-pass filter of varying cutoff frequencies
(specifically 836 H z, 326 H z, 152 H z and no filtering), in order
to simulate the effect of lowering the sampling rate. The
experiment is repeated for six different surfaces, as shown
in Fig. 6b. Respective results can be seen in Table V, where
the average over all testing surfaces is shown, for all tested
sampling frequencies (SF) and desired normal forces (DNF),
between the features that are widely used (AFFT) and the
proposed ones (BOTH).

Results for the translational slip case (TPR) show that the
proposed features on average outperform the AFFT ones by
14%, reaching 82%. This is more indicative in the rotational
slip case (TPR) where the proposed features on average out-
perform the AFFT ones by 40%, reaching 72%. Performance
in both slip cases denote that the proposed features recognize
slippage more efficiently. Finally, the stable case (TNR) is
recognized equally well by both feature sets at around 90%.
Moreover, the proposed approach appears not to be affected
from the different sampling frequencies as opposed to AFFT
and consistently performs better. Finally, notice that the signal
to noise ratio of ATI sensor is lower than the Optoforce sensor,
indicating that the classifier performs well under substantial
noise levels.
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TABLE V: Performance of the ATI dataset evaluated with
the trained model on 1 surface of the Optoforce dataset

TRANSLATION ROTATION
SF | DNF AFFT | BOTH | AFFT | BOTH
Lon | TPR [ 0.68 0.78 030 | 072

No : TNR | 0.89 0.88 0.98 0.95
Filier [~ o 7| TPR | 071 0.83 0.27 0.71
: TNR | 0.87 0.88 0.92 0.86

Lox | TPR [ 0.60 0.84 040 | 065

83611 : TNR | 0.71 0.89 0.74 0.92
z Lsn | TPR | 079 0.84 0.39 0.64

: TNR | 0.86 0.87 0.98 0.97

Lon | TPR [ 053 0.84 0.23 0.75

306H : TNR | 091 0.89 0.91 0.87
z Lsn | TPR | 077 0.80 0.33 0.77

: TNR | 0.99 0.90 0.98 0.86

Lon | TPR [ 075 0.82 0.43 0.78

L5oH : TNR | 0.99 0.90 0.98 0.82
z Lsn | TPR | 0.3 0.84 0.23 0.74

: TNR | 091 0.89 0.91 0.87

Averase TPR | 0.68 0.82 032 0.72
verag TNR | 0.89 0.89 0.93 0.89

(b) Experimental Setup

(a) ATI sensor and cover

Fig. 6: New Experimental setup with ATI sensor

VI. CONCLUSIONS

In this work a novel feature vector has been proposed
for slippage detection, combining time and frequency domain
content of measured force magnitude. The proposed scheme
assumes the availability of the contact force magnitude, which
implies the possibility to acquire 3D force measurements.
It has been shown that time domain features, as well as
their combination with frequency ones, are consistent in their
performance and generalization ability, even trained with only
one surface, to a different setup and sensor for both transla-
tional and rotational slippage. In contrast, FFT, the most usual
current practice, requires more surfaces to generalize and even
then falls behind the proposed features’ performance. It is
within our future plans to further demonstrate the proposed
strategy’s performance via grasp stability achievement with
unknown objects and disturbances in combination with a
simple reaction scheme. (Code and video available online
at https://goo.gl/qXydbh and https://goo.gl/jCDMKG respec-
tively)
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