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Abstract

In this paper we address the modeling and learning of complex non-linear rigid-body motions
employing Gaussian processes. As the common procedure of using Euler angles in the Gaussian pro-
cess results in inaccurate predictions for large rotations, we represent the input data by axis-angle
pseudo-vectors for rotations and Euclidean vectors for translation. Our decision in favor of this rep-
resentation of the special Euclidean group SF(3) is due to its computational efficiency. To allow
Gaussian process estimation on a non-Euclidean input domain, such as the space of rigid motions, we
generalize the model by introducing novel mean and covariance functions on SE(3). We prove that
those functions fulfill the requirements of Gaussian processes. The proposed approach is validated on
simulated and on real human motion data. Our results demonstrate significant benefits of the proposed
rigid-body Gaussian process with respect to alternative variants in terms of regression performance

and computational efficiency.
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1 INTRODUCTION

Data-driven modeling approaches become more and more popular in robotics, in particular in domains
where models employing first order principles fail. This includes the modeling of human motion for
human-robot interaction [1], programming by demonstration [2], and many other. Gaussian process
(GP) regression, Gaussian mixture models (GMM) and neural networks (NNs), especially recurrent
neural networks (RNNs), have been employed for data-driven modeling in continuous-time space. GP
regression is a powerful nonparametric Bayesian regression method that has become increasingly pop-
ular for modeling system dynamics [3]. The objective of this paper is to model and learn complex
rigid motion dynamics from mere observations. We propose to employ GP regression for its suitability
to model non-linear mappings and for its natural ability to model predictive conditional probabilities
including a best estimator and a prediction confidence. This uncertainty estimate depending on the
distance to the training data set is highly valuable in safety-critical applications such as human-robot in-
teraction [4]. Nevertheless, a major drawback of this model is that it is defined in Euclidean space. Even

though a formulation with non-Euclidean input space is possible in principle, the traditional formulation
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requires a Euclidean vector space structure on the input as well as the output space. As for rotations
there exists no representation in Euclidean space, they cannot be modeled accurately. The common
procedure, see e.g. [5], is to use the Euler angles representation for orientations, as close to zero their
space is almost Euclidean. However, when the rotation is large, for example at high angular speed, low
sampling frequency or if training data is sparse, this approach leads to inaccurate predictions. Therefore,
we generalize in the present paper the GP to incorporate input domains within the non-Euclidean space
of rigid motions SE(3). As a shortcoming of the GP model in generals is its computational expense, we
seek for a computationally efficient representation.

So far, only few works consider the problem of generalizing the GP model to non-Euclidean input
space, even though it is crucial for achieving accurate estimation results. As in GP modeling an essential
part concerns the definition of kernel functions over spaces different to the Euclidean space, we start by
reviewing related work on this topic. Gaussian kernels for a Hilbert space embedding are investigated
in [6]. However, a manifold metric does not necessarily result in a valid kernel function, e.g. the
kernel from the Stein-divergence. Sufficient and necessary conditions to obtain valid Gaussian kernels
on metric spaces is introduced in [7], which we will use to develop the kernel function in our rigid-
body GP. Also few works are available on GPs variants on non-Euclidean spaces. An embedding of
latent variables into non-Euclidean space is presented in [8], considering topologically-constrained latent
variable models. However, as only locally linear embeddings are considered, the standard GP structure is
maintained. Another related approach, presented by [9], introduces a geodesic GP. The GP model is used
to train a surface embedding in Euclidean space. That is to say, the GP is defined in Euclidean space but
maps geodesic distances to a Euclidean equivalent. A manifold GP [10] models jointly two composed
functions m o g, where m is a deterministic mapping from an abstract manifold M into a Euclidean
feature space and g the GP regression task. The approach aims to model complex and non-differentiable
functions, for which the smoothness assumptions on standard kernel functions are unsuitable. In contrast
to this approach where both mappings m and g are abstract, we propose an alternative approach in which
a concrete manifold is given. In our preliminary work [11] and [3] another valid GP enhancement to the
special Euclidean group SE(3) is introduced, namely the GP over dual quaternions. However, the use
of quaternions harbors disadvantages, such as increased computational complexity and training failures
due to the topology of quaternions that induces sensitive reaction to the hyperparameter choice.

The contribution of this paper is a novel computationally efficient and robust rigid-body GP suitable
to model motion dynamics in the special Euclidean group SE(3) in a rigorous way. In contrast to
previous work, we propose the representation of rigid motions by axis-angle and Euclidean vectors to
develop a GP model, that generalizes to non-Euclidean input space. We present novel mean and kernel
functions and provide a proof for the important generalized squared exponential kernel to be valid.
The proposed approach outperforms comparable GP variants at large in computational efficiency and
accuracy as we demonstrate experimentally.

The paper is structured as follows. The general modeling approach is presented in Sec. 2, before the
rigid-body GP is developed in Sec. 3, which involves the introduction of the rigid motion representation,
the mean and kernel functions and a comparison with an alternative GP generalization, the GP over dual

quaternions. An experimental evaluation is provided in Sec. 4.



2 MODELING APPROACH

In the following, we briefly describe the challenges of modeling rigid-body motion dynamics by Gaus-
sian processes (GPs) and our approach using axis-angle pseudo-vector and Euclidean vector for rotation
and translation representation, respectively. Compactly stated, a Gaussian process is a collection of ran-
dom variables, any finite number of which have a joint Gaussian distribution [12] and a precise, more
explicit formulation is given in the following.

Definition 1. Let X be a (multidimensional) index set, and denote by {o( X) } xc x a real-valued stochas-
tic process over X. Such a process is called Gaussian, if and only if any finite collection of random

variables {¢(x1), ..., (%)}, where v € N, is v-dimensional multivariate Gaussian.

We call ¢( x) distributed according to a GP,
o(x) ~ GP(m(x), k(x, x')), (1)

for a mean function m( x) and a kernel function k( x, x’) such that

@

GP characteristics A GP model returns for any input value x* € X an estimate for ¢( x*) in form of
a Gaussian distribution N (i x+, 0 x+ ) and Gaussian distributions require an underlying Euclidean vector
space structure to be correctly normalized. Intuitively, the terms distance, angle, vector, addition and
inner product need to be defined (inducing a flat space) for that the normalization factor of a Gaussian
correctly scales the probability measure. As in non-Euclidean curved space density is not uniform, the
normalization is corrupted and thus, no Gaussian probability is defined.

While Def. 1 implies no requirement to the domain X’ of function ¢(-), despite the need to al-
low the definition of a valid mean function m(-) and kernel function k(-,-), the target set p(X) is
required to possess a Euclidean vector space structure and be scalar. Thus, set ¢(X') is isomorphic to R.
To consider vector-valued stochastic processes f = (¢1, ..., ¢n), the common procedure is to model
each component ¢;, [ = 1,...,n, by a Gaussian process ¢;(x) ~ GP(my;(x), k;(x, x')) with the
same classes of mean and kernel functions for all [. In many applications the mean function is set to
zero, my(x) = O,(x) as this reduces the computational expense without limiting the expressive power
of the process [13, Chap. 6.4.1]. Hence, the heart piece of GP modeling concerns the definition of the
kernel function. Apart from few exceptions, the kernel functions can be divided in two classes: sta-
tionary and dot-product kernels. So far, in both kernel function classes the vast majority assumes also
domain & to equal R™. We will provide one basic kernel for each class of kernel functions as a baseline

from which more kernels can be constructed.

Modeling rigid-body dynamics Here we employ GP regression to model non-linear rigid-body mo-
tion dynamics. By considering rigid bodies only, the possible movements consist of rotation and trans-
lation, which together generate the special Euclidean group SFE(3), the space of rigid motions g. We
consider the specification in continuous time via a mapping from state space to the space of its time



derivatives. Thus, the rigid-body dynamics are given by
f: SE(3)) = TSE(3), 3)

a mapping from the rigid motions g € SFE(3) to the according velocity space T'SE(3), which is de-
scribed by a tangent bundle

TSE3)={(g, 0)lg € SEQ3), g€ T¢SE(3)}, 4

consisting of pairs of a rigid motion g and corresponding time derivative  in the tangent space T4 SE(3).
We further assume that the observation of the velocity is disturbed by a noise process in the tangent space,
ie.ng € T4SFE(3), and we obtain noisy measurements of the velocity through the mapping

f: SE(3) x T{SE(3) — TSE(3). 5)

Our objective is to employ GP regression for finding an approximation of the unknown dynamics (3).
Advantageously, in this formulation the output space of the GP is a tangent bundle T'SFE(3), which
provides a Euclidean vector space structure. In consequence, if we find valid mean and kernel functions
over the rigid motion space S E(3), the GP output in form of a Gaussian distribution is well-defined, and
therefore also the rigid-body GP. For the proposed representation of rigid-body motions a discrete-time
integration is available, allowing the representation in form of a discrete-time dynamics by composing
dynamics (3) and the integration.

3 RIGID-BODY GAUSSIAN PROCESS

In this section, we introduce our approach to generalize GPs to modeling rigid-body motion dynamics.
After introducing the rigid motion representation by axis-angle and Euclidean vector, we review GP
model learning and prediction to point out the requirements for the aspired GP generalization. We see
it is sufficient to define valid mean functions and kernel functions to obtain the generalization to 6-DoF
motion dynamics. Thereafter, we introduce a set of fundamental functions containing the zero mean and

a dot-product kernel as well as a stationary kernel function.

3.1 Rigid Motion Representation

From Euler’s fixed point theorem (1776) [14] we know that in 3D space any rigid-body displacement
with one fixed point, i.e. any composition of rotations, can be equivalently described by a single rotation
about some non-trivial axis of rotation through the fixed point. This axis is also called Euler axis. Thus,
the set of unit length Euler axes u together with a rotation angle 6 parametrizes the rotation group, called
special Orthogonal group SO(3)

SO(3) C {fu e R®*||ul| =110 € [0,7]}. (6)

The set given in (6) defines the solid ball B, (0) in R3 with radius 0 < < 7 centered around the origin
and is thus closed, dense and compact. Ambiguity in the representation occurs for § = 7, as 7u = —7u
define the same rotation. To obtain an isomorphism between the rotation group SO(3) and the axis-angle



representation, we additionally fix the Euler axis representation for § = 7 and obtain

B(0) := B,(0) \ {rulu. <0V (u,=0Au, <0)

(N
V(u,=u,=0Au, <0)}.

This parametrization of the rotation group by a Euler axis and a rotation angle is a minimal and unique,
SO(3) ~ Br(0).

The special orthogonal group SO(3) obtains its group structure from the operation composition of
rotations. As the axis-angle representation only defines a pseudo-vector, none of the vector operations
addition and multiplication is suitable for rotation composition. Instead, we define the rotation compo-

sition of two rotations #;u; and f>u, in B,r (0), inspired by unit quaternion multiplication,

®)

vV1—a?+b
02u2001u1(2acos(|abc|) @? + b(u x u1)>’

1—(a%? —bc)?

03 us

where we substitute a = cos (%), b =sin (%2) sin (%1) andc=1+ usuj.

In the proposed GP generalization, we seek to model a dynamics as given in (5), mapping from the
rigid motions into the velocity space. In many control applications, however, it is of interest to generate
a prediction of the motion including uncertainty certificates in SFE(3). This requires the integration of
the velocity signal and the corresponding transformation of uncertainty, which is not trivial in general,
as the space of rigid motions SE(3) is non-Euclidean as soon as rotation is present. Consequently, the
Gaussian describing the uncertainty in velocity space, has to be transformed to a curved space, where
probability distributions inherently are not defined.

In the following, we discuss how the exponential function is employed to integrate predictive angular
velocities to the system states. SO(3) is a compact Lie group with corresponding Lie algebra so(3), the

set of skew-symmetric matrices
s0(3) = {Q e R¥3|QT = —Q} . 9)

It is well-known, see [15, Chap. 3.7], that for Lie groups the exponential map exp : s0(3) — SO(3) pulls

back elements to the special Orthogonal group. Given any angular velocity w € R?, where 6, = ||w||
and u, = Ho‘:’—”, the corresponding skew-symmetric matrix
0 —Ws w2
Wwx = | ws 0 —w (10)
—W9 w1 0

is pulled back to an element R in the special Orthogonal group SO(3) using
R = exp([f,uy]x)- (11)
From [16] we know that (11) can be calculated using Rodrigues’ rotation formula

R =cosO,I +sinf,[u,]x + (1 —cosb,)u, uz, (12)



where I denotes the identity matrix. This induces that in axis-angle space the exponential function acts
locally as identity on the angular velocities w € s0(3), what formally means exp(w) = exp(f,u,,) =
0,u, € SO(3). Consequently, a Gaussian, representing the velocity prediction uncertainty, which
is defined in the tangent space, describes equally the uncertainty over rotations in SO(3) for a small
neighborhood U around 6,u,,. Outside the neighborhood the variance is still approximated by the
Gaussian, but with increasing Euclidean distance, the approximation quality decreases rapidly. Hence,
we can use the exponential function to integrate in discrete-time from the tangent bundle 7'S E/(3) to the
special Euclidean group SE(3). Thus, we obtain discrete-time dynamics by composing dynamics (3)
with the integration, exp of.

Since required for the generalized GP kernel definition, we additionally introduce the dot product
and a distance measure between rotations for the axis-angle representation. The dot product of two
rotations in axis-angle is defined as the regular scalar product in vector spaces,

<011117QQUQ> = |01| ‘02| cos<{uius. (13)

As distance function we propose to define the length of the geodesic between rotations. For rotation
matrices and unit quaternions such arc distance functions are used by [11] and [17]. Moreover, [16]
and [3] prove that for both representations the arc distances define metrics. The arc distance for axis-
angle can be derived from unit quaternions considering that the angle between unit quaternions is half
the angle between rotations, because unit quaternions are a double coverage of the rotation group SO(3).

Hence, we obtain as metric

0 0 0 0
dare (6111, 62us) =2 acos cos%cos;2 + sin;1 sin;2 ujuyl. (14)
In the following, we present our approach to combine rotation with translation, which we represent
by Euclidean vectors v € R?, As BW(O) is a unique rotation representation, the link with translations
can be realized using the standard Cartesian set product. The spaces of rotation B, (0) and translation R?
jointly define isomorphically the special Euclidean group

SE(3) ~ B.(0) x R? (15)

and any rigid motion g € SFE(3) can be equivalently represented by g = (fu, v) € B,(0) x R3.
The group structure on SF(3) is inherited from the group structure on the subspaces, namely com-
position. As translation composition in R? is defined via vector addition, we obtain as composition

operation of rigid motions in SE/(3)
(B3u3, v3) = (62uz 0 b1uy, ous(vy) + va), (16)
where fous o 611, as defined in (8) and faus( vy) is obtained using Rodrigues rotation formula
fouz(vy) = vicos by + sinfa(ug X vi) + ug (u;—vl)(l — cos ) (17)

for translation vectors v; € R3, 4 =1,2.

The dot product on S F(3) with the representation by axis-angle pseudo-vector and translation vector



is defined as in regular vector spaces,
(g1, 92) = (011, 02u2) + (v1, v2). (18)

As distance function on SE(3) we define the root over a sum of squares, inspired by [11], but include
a convex combination of weights, > . p; = 1, where p; > 0, to allow an application dependent scaling
between rotation and translation, as we know from [17] that any distance metric in S FE(3) will ultimately
depend on a choice of length scale. Together, we define as distance function

d(g1, 82) = \/ 1 [due (111, 0500)[> + | V1 — Vo2 (19)

The distance function (19) allows for incorporation of domain knowledge. To give an intuitive example,
one can imagine the divergence in motion dynamics of a spinning top and a large truck. While the
cost for a 27 rotation of a spinning top may be in the range of millimeters in translation, a truck may
cover large distances easier than a full rotation. This dynamics difference should be reflected in the
similarity measure between poses, as application specific weighting of rotation and translation increases

the regression performance of the GP.

3.2 GP Model Learning and Prediction

In the following we provide an intuitive understanding of the principle of GP modeling and discuss the
requirements for a GP generalization to estimate rigid-body dynamics.

Model training Model training ultimately refers to optimizing the parameters of the mean and the
kernel function. We consider a smooth mapping f : X — V, with f (x) = % and a training data
set D, = {(x;, %X;)}7_; consisting of n-dimensional input-output pairs. Per output dimension | =
1,...,n, a set of GP hyperparameters h;, configuring the pre-identified classes of mean function m(+)
and kernel function k;(-,-), is adjusted to approximate the rigid-body dynamics f. Optimal accuracy,
given the input values x;, is obtained for the dimension-wise globally maximum likelihoods of the
observations X;. As both functions, mean and kernel, solely depend on the GP domain, see (2), it
consequently suffices to provide valid mean functions and kernel functions per dimension [, defined on

that domain & to generalize GP model training to a non-Euclidean domain.

Prediction For any new value x,; the GP returns a predictive Gaussian probability distribution de-
fined in the target set V; for each component of X, 1, namely N'(y, o;) forindex [ =1, ..., n. Mean

1 and variance o; of the [-th component is calculated analytically,

(%x1)1 —m(x1)

o =m(x,41) + KK 20
()1 — m(x,) 20

o1 =k(xp41, xp41) — KK 'K/,
where the Gram matrix K is obtained by (K),;; = k(x;, x;) for¢,j € {1,...,r} and each entry of

the row vector (K. ); = k(x,41, Xx;). Thus, the necessary and sufficient requirement for the output
space V is to allow the definition of a predictive Gaussian distribution, which in turn requires a real



underlying vector space structure to be correctly normalized. Due to the structure of dynamics (3), the
requirement is fulfilled and the predictive output is defined.

3.3 Mean and Kernel Functions

In the following we introduce a set of valid mean and kernel functions defined on the special Euclidean
group SE(3). For modeling dynamics of form (3) we know from (2) that each mean and kernel function
has the form

m: SE(3) — TSE(3)

(21)
k: SE(3) x SE(3) — R.

For the mean function m(-) no further requirements need to be satisfied. In the special Euclidean
group, the zero mean maps any input g € SE(3) to the zero element of the tangent bundle T'SE(3),
ie.m(g) = Or,sE(3)- Kernel functions encode the correlation between the elements of the dynam-
ics input domain SFE(3) and constitute the essential part of GP modeling. A kernel is required to be
symmetric and positive semi-definite to define a valid kernel function. As in literature various strategies
are available to construct more elaborate kernel functions by composition from elementary kernels, e.g.
see [18], we focus on introducing one representative per kernel class.

Dot-product kernel From [12] we know that the dot-product kernel defines a valid kernel function
for elements x;, x; € R",n € N, Vi, j. In our setting, we seek to model rigid-body motion dynamics,
where the rigid motions g € SFE(3) are represented by axis-angle pseudo-vectors concatenated with Eu-
clidean translation vectors. That means, g = (fu, v) € B,(0) x R3. In this space, the dot product (18)

describes the same operation as the vector space dot product in R®. Thus it follows,

kdol(giu gj) = <gla gj> + Ugéij7 (22)

with hyperparameter 03 > 0, defines a valid kernel function on the rigid motions Vi, j. Throughout the
paper, we use the standard formulation, see [12], of introducing a noise term in the kernel function as
required for (5), where the d-function is defined by
1, ifi =y,
8ij = (23)
0, ifi#j.

Stationary kernel One of the most important stationary kernels is the squared exponential kernel. In
the following we show that the kernel based on the distance function (19) is indeed a valid kernel.

Theorem 1. The function ks, : SE(3) x SE(3) — R{,

[d(gi, 9,))

2
2)\2 ) +0n6ij7 (24)

kse(gia g]) = 0')2“ €exXp <_
where we consider a distance function d defined by (19) and positive hyperparameters h = (X, 05, 0y),
namely length-scale X > 0, signal variance oy > 0 and signal noise o, > 0, defines a valid kernel

function.



Proof. We know that the finite sum of kernels provides a kernel [13, Chap. 6.2] and it follows from
definition that U?Léij > ( defines a valid kernel. Hence, we can focus on the first summand in the
reminder of this proof. Introducing (19) in the noise-free squared exponential kernel, we can rewrite (24)

neglecting the noise term o24;; as
p1[darc (0515, 60;u;)]? pall vi — v;|?
2 exp (_ (a0, 001 (el v~ vl o)
* *

A proof for the standard squared exponential kernel & to be valid is provided in [13, Chap. 6.2]. As any
kernel scaled by a positive constant and any finite product of kernels yields each a new valid kernel [18],
it suffices to show that also % defines a valid kernel, to complete the present proof. To formally show
that % is a kernel, some mathematical formalism is required and we therefore need a new term, namely
cpd:

Definition 2 ([19]). Let X be a non-empty set. A real-valued symmetric function k : X x X — R
is called conditional positive definite (cpd) kernel function, if and only if the Gram matrix K € R¥*V
satisfies ¢ ' Kc > 0 for any vector ¢ € RY withc'1 =0, where 1 = (1,...,1)7.

We utilize the cpd property in %. A kernel k being cpd induces that exp(ck) defines a valid kernel

function Vc > 0 [19]. Hence, it suffices to show that the squared negative distance function
Fana (00, 0') 1= = ([due (01,6 (26)

defines a cpd kernel. To derive that, we transform the orientation representation to unit quaternions,

obtained from the axis-angle representation by q = +(cos g, sin g u). Then, introducing (14) into (26),

we obtain

)2 @7

where Re denotes the real part of a quaternion and "q the quaternion conjugate. Let us substitute 3 :=

kgna(q, ') = —4 (acos ‘%e(qﬁ’)

|Re(qq’)|. It is well-known, that acos(3) = 5 — asin(3). Hence, we can rewrite

ksna(d, @) = —m* + 4dasin(3) (7 — asin(3)). (28)

From [19] we know that any constant ¢ € R is cpd, a valid kernel always is also cpd and the finite
sum of cpd kernels is cpd. Thus, if we can prove that both auxiliary functions g1(3) = 7 — asin(3)
and g2(3) = asin(3) for 3 € [—1, 1], define valid kernels, it follows that (28) is cpd, and therewith (27)
and (26), which would conclude the proof. In the remaining part of the proof, we analyze the auxiliary
functions g;1(3) and g2(3). Our aim is to apply [19, Theorem 4] stating that a function f ((q, q'))
defined on the unit sphere, | q| = |q’| = 1, in an infinite dimensional Hilbert space is a valid kernel
if and only if its Taylor series expansion has only non-negative coefficients. It is well known, that the
coefficients of asin in infinite series writing are non-negative and that — asin( 3) = asin(— 3) holds. To
cope with the minus in function g;( 3), we re-substitute — 3. The real part of a quaternion product is

calculated
Re(qq) = (+q, ). (29)

Taking advantage of the fact that opposing unit quaternions =+ q, represent the same orientation, 4+ q



and @’ can be chosen to lie on the same hemisphere of Ss, such that we obtain a positive value
for (+ q,q’). Hence, we are allowed to apply [19, Theorem 4] and the proof is complete. O

3.4 Comparison of GP Variants

Besides the rigid-body GP over axis-angle and translation vector, which we investigated so far, another
GP generalization suitable for modeling rigid motions in SE/(3) is available, namely the GP over dual
quaternions [3, 11]. The underlying idea of the GP over dual quaternions is similar in a sense that
dynamics are also represented from the space of rigid motions to its time derivatives. However, the
topological structure of the rotation representation using unit quaternions on .Ss is different: In contrast
to our rotation representation on a solid ball BW(O), defined in (7), the unit quaternions lie on the unit
hypersphere S3. They are combined with a translation vector to a dual quaternion, representing a full
rigid motion at once. While the representation via dual quaternions does not allow for weighting, direct
access to the weighting factors p1, pa is provided by the distance function (19).

Another difference is that the topological structure of quaternions requires a more complex integra-
tion than our novel GP generalization: In the GP over dual quaternions, the integration is handled by
an operation that projects values from the velocity space to the manifold of rigid motions SE(3). In
addition, a computationally demanding tangent space change operation is necessary, to disambiguate the
tangent bundle representative, which becomes redundant in the novel rigid-body GP over axis-angle and
Euclidean vector, as our integration via exponential function locally acts as identity, see (11) and below.
Further, even though both GP variants use geodesic distances, differences in the definition of the metrics
result in different GP training behavior, as the distance function affects the correlation between rigid mo-
tions. In the experimental evaluations we demonstrate that the GP over axis-angle and translation vector
exhibits in the training phase a more robust behavior towards the initial choice of hyperparameters.

The model training complexity of both GP variants is equal to the standard GP complexity of O(n?),
where n is the number of training samples, which is due to inversion of an n X n covariance matrix.
With a fixed training data size, the GP prediction complexity for all 3 variants is O(n), where n is the
number of predicted points. In addition, we analyze the computational demand by counting floating-
point operations (flops). Given a training set of n samples, the required number of flops for calculating
the covariance matrix using the squared exponential kernel function is 18n? 4 36n + 16 for the standard
GP, 24n? + 85n + 18 for the GP over dual quaternions and 22n? + 26n + 15 for the novel rigid-body
GP, respectively. This results in significant runtime improvement, in particular as the number of training
samples increases, which is demonstrated in the next section.

4 EXPERIMENTAL RESULTS

In this section we evaluate the proposed approach of a rigid-body GP in three experiments; first regarding
runtime of the GP prediction, second regarding accuracy in the rotation estimation and third regarding
its suitability in a real world application. We compare our results with the GP over dual quaternions
and with the often applied standard GP in Euclidean space, where rotations are represented inaccurately
as Euler angles. All experiments were implemented in MATLAB using the GPML toolbox [20] on a
commercially available PC with intel core 15-6360U processor and 8 GB RAM. The GPML toolbox was
extended to additionally comprise the generalized GP over axis-angle and translation vector and the GP

over dual quaternions. We focus on the generalized squared exponential kernel (24), as for this kernel
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Figure 1: Average GP velocity prediction runtime for 10001 unknown rigid-body motions g. Per model
the box height shows the average required time and the gray error bar the standard deviation over 1000
repetitions.
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Figure 2: Rooted mean square error in the GP prediction of 1000 test points for 1000 synthetically
generated dynamics. Per model the box height shows the mean RMSE and the gray error bar the standard
deviation over the 1000 experiment repetitions.

a pendant is available in quaternion space and as for the dot-product kernel no significant difference is
expected, as calculations are equal to those in Euclidean space.

4.1 Runtime Comparison

We generate 80 training pairs D, = {(g;, §;;)}i—; in this simulation, consisting of randomly drawn
rigid-body motions g € SE(3) as GP input and corresponding velocity output g; in one dimen-
sion [ € {1,...,6}, which is obtained by the pseudo-random output generator algorithm provided in
the GPML toolbox. Each training pair is once represented as axis-angle and translation vector, once
as dual quaternion and once as Euler angles with translation vector. After the model training phase
we compare the runtime required for GP velocity prediction at 10001 new randomly drawn rigid-body
motions for the three representations. To obtain reliable and reproducible results, we repeat the experi-
ment 1000 times. Figure 1 visualizes the resulting average prediction times of the 10001 test points and
the standard deviation of the average required time for each representation. An independent-samples
t-test is conducted to compare the runtime of the newly introduced rigid-body GP with the GP over dual
quaternions. The superiority of the GP parametrized by axis-angle and Euclidean vector is verified by a
t-test, t(1998) = 37.8, p = 0, showing a significant improvement in runtime.

4.2 Rotation Prediction Accuracy

In a second simulation we generate random rotation dynamics, mapping from the special Orthogonal
group SO(3) to the rotational velocities T'SO(3). We focus on rotations, as this is the well-known
challenging issue in GP modeling. From every artificially generated dynamics f as in (3) we obtain 1000
ground truth testing pairs consisting each of a rotation with corresponding rotational velocity. From this
data we draw 100 i.i.d. random training samples. After the GP training, we compare the predicted GP



values for the testing rotations with the ground truth velocities to evaluate the prediction accuracy for
three rotational GP variants; the GP over axis-angle, the GP over unit quaternions (which is a special
case of the GP over dual quaternions with purely rotational input) and the GP over Euler angles.

Procedure As we are interested in nonlinear motion behavior, we generate each rotation dynamics f
randomly from the trigonometric functions F = {sin, cos, atan, acot }. For simplicity of the description
we consider vector-valued dynamics drift terms f(fu) = 6’u’ of a specific structure only: For i =

1, ..., 3 each function component has the form

fi(Bu) =g (i) od*é, (30)
where function ¢ € F. The operators are defined by ¢ := & and x := x /=, the constants ¢,¢ €
{+£1,£2, £1} influence the rotation magnitude in the dynamics and the variables d, d € {0y, fu,, fus}
denote entries in the axis-angle pseudo-vector. We randomly generate 1000 rotation dynamics of the de-
scribed form, transform the axis-angle representation to unit quaternions and Euler angles for both,
dynamics input and output and unwrap the Euler angles to avoid the jump at . Per simulated dynam-
ics we train the models using the standard procedure of minimizing the negative log marginal likelihood,
where the hyperparameter start values A, o are i.i.d. samples from the interval (0,3). The signal
noise oy, is set to 1 to assure numerical stability during the training phase. As evaluation, the single-step
prediction accuracy of each test value in terms of the root-mean-square error (RMSE) is compared to the

ground truth.

Results It is clearly visible in Fig. 2 that the average RMSE over 1000 repetitions of each time 1000
predictions of the proposed generalized GP over axis-angle outperforms the other GP variants, as it’s
estimation error is only about half the error of the other models. Independent-sampled t-tests are con-
ducted to compare the axis-angle generalization with each of the other GPs. A significant improvement
(with significance level 1%) in the scores for both comparisons is obtained: ¢(5998) = 8.6, p = 0 for
condition axis-angle versus dual quaternions and ¢(5998) = 16, p = 0 for condition axis-angle versus
Euler angles. These results demonstrate the robustness of the proposed rigid-body GP over axis-angle,
as it succeeds best in approximating the dynamics under such generalized and suboptimal learning cir-
cumstances. Due to the projection required in the GP over unit and dual quaternions, respectively, this
GP variant is highly sensitive to the starting values of the GP model learning and thus, performs inferior
in learning a suitable GP model for many of the 1000 random dynamics. Hence, the results show large
variance in the prediction error for the GP over unit quaternions, even though theoretically comparable
estimation quality should be achievable.

4.3 Real World Experiment

In the last experiment we evaluate the proposed rigid-body GP in a real world application. Our goal is
to learn human behavior from demonstration. Applications for reproduction and prediction of human-
like movements are widespread in robotics, e.g. in programming by demonstration and assistive robotics.
Consider a human-robot interaction scenario where a robot should help putting on a shoe to an elderly. In
future work, we aim to design a human-model-based control for the robot, to assure intuitive assistance.
Therefore, we require a model for human motion behavior in the specific task of passing and slipping



on a shoe to someone else’s foot. We learn the human provider motion using the novel rigid-body GP
parametrized by axis-angle pseudo-vector and Euclidean vector.

Figure 3: Human-human shoe providing experiment. One human puts on a shoe to another as prelim-
inary study for elderly assistance in service robotics. The blue lines depict the translation part of the
providers’ 6D motion trajectories.

Experiment Procedure The setup for capturing GP training data is visualized in Fig. 3. The transla-
tion part of the trajectory bundle is depicted in blue. The GP is trained on 9 trials of shoe passing and
slipping on, demonstrated by different human providers. The data is captured with a motion tracking
system (Qualisys, Sweden) at 179 Hz and consists of 6D poses (rotation and translation of the shoe
while grasped by the human). The corresponding 6D rotational and translational velocities are obtained
by finite differences. The motion trajectories are synchronized on the onset and cut when the contact
force between foot and shoe exceeds a predefined threshold, as we suggest to change the controller at
that moment. To assure fast runtime of the GP prediction, the GP training is performed on 10% random
samples of the captured data. We set the weights in (19) to p; = 0.7 and py = 0.3, to compensate for the
magnitude difference in the captured rotations and translations. The GP training with the total number
of v = 1752 training data pairs requires 8.05 seconds.

Results and Accuracy After the training phase, we calculate 100 new motion trajectories, starting
from previously unseen initial 6D poses. The trajectories are generated using single-step ahead mean
prediction, which is integrated to pose by the exponential function. In Fig. 4 and Fig. 5 one predicted
trajectory is visualized exemplary dimension wise by a black dashed line. The training trajectories are
depicted by dotted lines for rotation and translation dimensions. The mean of the training trajectories
is visualized by a red solid line and the dark blue dash-dotted line shows a trajectory, which starts at
the same initial pose and is predicted using the standard GP over Euler angles and translation vector.
All of the trajectories estimated using the novel rigid-body GP starting within the region of human
starting poses, stayed throughout the movement within the variance of the human training data. The full
trajectory prediction requires 0.84 seconds on average.

For accuracy evaluation we resample the training all to the same length of 3.5 seconds. Then, we
determine per time step mean and variance of the training trajectories and use the so obtained time series
distribution as our ground truth. For both GP variants we calculate per time step the Bhattacharyya
distance to our reference distribution. On average, the distance to the proposed rigid-body GP is 2.9
and to the standard GP using Euler angles it is 4.4. In addition, a t-test is conducted to compare the
Bhattacharyya distances per GP condition. We consider per GP variant the distances per time step as
random samples from a distribution describing the similarity of the GP predictions and our ground truth
distribution. The t-test shows a significant higher similarity for the proposed rigid-body GP than for the
standard GP over Euler angles and translation vector, ¢(68) = 4.1, p = 0. For translation, Fig. 5, no
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Figure 4: Rotation dimensions of the training data (colored dotted), the newly generated motion trajec-
tory by GP prediction (dashed black), the mean of human demonstrations (red solid) and the standard
GP prediction (blue dash-dotted).
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Figure 5: Translation dimensions of the training data (colored dotted), the newly generated motion tra-
jectory by GP prediction (black dashed), the mean of human demonstrations (red solid) and the standard
GP prediction (blue dash-dotted).

significant difference between the GP variants is visible, whereas the rotation, Fig. 4, is considerably
better captured by the rigid-body GP over axis-angle and Euclidean vector.

S CONCLUSIONS

In this paper we introduce the rigid-body GP, an approach for learning and predicting motion dynamics in
the special Euclidean group S E(3). We employ the axis-angle representation to obtain a computationally
efficient GP variant, which generalizes the GP to input data domains in non-Euclidean space. The
proposed rigid-body GP outperforms both alternative approaches, namely the GP over dual quaternions
and the state of the art GP where rotations are represented by Euler angles.

We introduce mean and kernel functions and prove them to be valid. The generalized version of
the most widely used kernel, the squared exponential kernel, is investigated under different aspects

such as computational complexity, prediction accuracy, and suitability in real world experiments. Our



results suggest, that the rigid-body GP with the squared exponential kernel comprises outstanding model

accuracy, robustness and computational efficiency.
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