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Abstract. This paper proposes a theoretical framework that determines
the high-level cognitive functions for multipurpose assistive service robots,
required to autonomously complete their tasks. It encompasses a proba-
bilistic POMDP based decision-making strategy that provides constant
situation awareness about the human and the environment by associat-
ing the robot awareness about the user with specific clusters of robotic
actions. To achieve this, a method for designing POMDP models is pre-
sented herein ample to define decision making policies suitable to resolve
assistive tasks through a series of robotic actions. The proposed POMDP
design methodology compensates the partial and noisy sensor input ac-
quired from the robot sensors by foreseen mitigation strategies on the
robot’s decisions when a software component fails. The theoretical work
presented herein is assessed over well defined robotic tasks and proved
capable to operate in realistic assistive robotic scenarios.

Keywords: decision making, assistive robots, POMDP, partial observ-
ability, robot situation awareness

1 Introduction

The autonomy of the contemporary assistive robots relies on their capacity to de-
cide on their own actions based on their cognitive functionalities and realize these
actions using their robotic planning mechanisms [1]. However, robot autonomy
is not an end in itself in the field of Human Robot Interaction (HRI) but rather a
way to support bidirectional interaction using robot actuator movements, com-
munication and representational schemas [2]. Based on this statement, the mod-
elling procedure of the robot cognitive functions, which will eventually determine
the decision making mechanism, should take into consideration that the realiza-
tion of an inferred robotic action will alter the status of the environment and the
interaction schema with the user, making thus the robot an active participant
in the human-robot cohabitation rather than a passive observer. Following this
notion, Markov Decision Processes (MPDs) constitute an efficient solution for
decision making and have beeb proved adequate to solve simplified problems
with diminished uncertainty [3]. However, it is typical for humans in real life
scenarios to make decisions under uncertainty since not all the facts are mea-
surable and not all the required observations are constantly available. When it
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comes to robotic application development, complete situation awareness is not
feasible since the environment should be modeled with limited robot sensors
and the acquired sensor observations are noisy; in such applications, the robot
belief uncertainty about the current state of the human, the environment and
the robot itself is broadened. Partially Observable Markov Decision Processes
(POMDPs) are able to model the uncertainties stemming from realistic situa-
tions better than the MPDs, while their main difference is that the world’s state
in the POMDP is not known to the robot; instead, a probabilistic observation
corresponding to the state is received from the environment after performing
each action [4].

The paper at hand aims to model the high-level cognitive functions of an
assistive social robot by formulating a decision making mechanism based on
POMDP models. Specifically, an explicit methodology for designing POMDP
models is presented herein, comprising a generalized theory in the domain of
robot intervention in assistive tasks. This method capitalizes on robot’s various
perception modalities, yet partially available, to infer an action plan considering
clustered type of robotic actions. Contrary to the existing POMDP applications
where the designed POMDP models are constrained to resolve specific tasks by
selecting optimal robotic actions, the proposed solution tackles the problem from
an alternative view point, where the selection of the robotic actions is tightly
related to the robot’s awareness about the human condition, which is reflected
into robot’s alert levels. Subsequently, the task to be resolved is the propagation
of the robot’s states to a lower level of alert.

2 Related Work

2.1 POMDPs as prompting systems

A profusion of laborious research has been conducted in the filed of health tech-
nology by introducing systems for elderly, possibly with cognitive or physical
disabilities, who want to continue living independently in their own homes [5].
Under this scope POMDPs have been either utilized as prompting systems as-
sisting people in their daily life by verbally motivating them to successfully
complete specific activities [6], or integrated in robotic agents modelling their
action planning mechanism to fulfill their assistive task. The design of prompt-
ing systems that react on time while exploit sensing and modelling mechanisms
is a laborious work. One exemplar application is the COACH system [7] which
uses computer vision to monitor the progress of a person with dementia washing
her/his hands and prompts only when necessary by employing a POMDP acting
as a temporal probabilistic model based on the sensed observations. However, the
COACH system is tailored to specific tasks and requires great amount of expert
knowledge for re-designing the POMDP model in order to be useful for different
tasks with generalization capacities. The authors in [8] tried to introduce a more
generalized framework for building prompting systems using POMDP models
by incorporating psychologically justified expert background knowledge. Specif-
ically this method incorporated Interaction Units [9] which is a psychologically
justified description of the task and the particular environment where this task



is to be carried out that can be generated from empirical data. This is then com-
bined with a specification of the available sensors to build a working prompting
system based on POMDPs. However, the automation of this procedure for the
production of context aware POMDP models is also limited and still requires
the expertise of a psychologist. As an attempt to diverge from the phycological
modeling the authors in [10] proposed a probabilistic relational model encoded
in a relational database allowing non experts in POMDP design to fill in the
necessary details of a task using a simple and intuitive procedure. Although this
method proved capable to automatically produce POMDP models for assistive
applications, yet the probabilistic database framework was limited to the scale of
the problem that could be modeled, also deteriorating the prompting capacities
to specific tasks that require well restricted operational environment.

2.2 POMDPs in robotic applications

In the service robots domain, the POMDPs have been widely utilized to in-
crease the robot autonomy in human populated environments. This has been
achieved in multiple applications levels, concerning examples such as navigation
and manipulation. The first attempt for using POMDPs in robotic tasks is the
work discussed in [11], where action space was simplified in basic and discretized
moves of the robot while the received observations were abstract representations
of the environment. The authors in [12] solved a more complicated aspect of
the navigation problem using POMDPs, where a point robot was considered
by diminishing the state and action space accordingly. The authors proved that
a simplified action space during the POMDP design can closely resemble the
efficacy of a model with greater resolution in the action space, while also the
policy computation time was discussed. In a more sophisticated work, the au-
thors in [13] utilized a hierarchical POMDP framework for robot navigation in
the context of which the localization, the local planning and obstacle avoidance
was tackled. In this work the occupancy grid map comprised the state space of
the robot, while the actions space consisted of a hierarchical discrimination of
robot rotational and translation capabilities. In [14], a POMDP model has been
developed to determine an objective function that considers both probability
of collision and uncertainty at the goal position, providing an alternative path
planning decision policy. Moreover, a proof of the usage of POMDPs in a great
variety of robotic applications is the work described in [15]. In this application,
the authors utilized a POMDP model as a prompting system in a probabilis-
tic planning of a bimanual robot that was targeted to unfold clothes. At this
stage, it can be inferred that although the aforementioned methodologies were
addressing their targeted functionalities competently, they were limited to their
specific task. This can be partially explained by the fact that the computational
complexity of solving a POMDP problem instance grows exponentially with the
size of the state and action space and thus it is difficult to concurrently model
precisely the state and the action space for the human, the robot and the envi-
ronment. Therefore, specific works tackle the issue from a different view point
where the POMDPs are utilized as robot control mechanisms that orchestrate



the robots behaviour in a variety of application tasks. In the work introduced in
[4], the authors developed hierarchical POMDP models focusing in the abstrac-
tion of the action space linking the hierarchy levels with actions tightly related
with folded subordinate POMDP models. In this way the authors achieved to
design easily manageable smaller POMDP models dedicated to specific robotic
actions instead of modeling a global model which is hardly to be solved by the
existing POMDP solvers [16]. This way, multiple tasks can be modeled using the
POMDP theory. In a more contemporary work [17], the authors introduced a de-
cision making and control supervision system suitable to operate on multi-modal
service robots. This bridges the gap of abstraction between designed POMDP
models and the physical world concerning actions, while multi-modal percep-
tion is processed to extract measurements uncertainty. Complementary to the
aforementioned works, a method that determines the human robot interaction
with assistive robots through POMDPS is the one described in [18]. The authors
designed a POMDP model where the human satisfaction from the collaboration
with the robot is the key factor to model the interaction, while the status of the
user in terms of awareness and stress determines the human’s participation in
the execution of the task. However, during the design of the POMDP model,
the target task should be explicitly analysed in the expected states of both the
human and the robot, comprising an efficient yet hard to be modeled solution.

Considering the existing solutions, the added value of the proposed work is
the determination of a theoretical framework that describes an explicit POMDP
design methodology. The formulated POMDP models are human-centric and
drive the cognitive functions of multipurpose social assistive robots. This state-
ment is based on the principal that the robot should be always on alert and
aware about the human cohabitant, while the decided actions should reflect the
level of robot’s alert. Through this procedure, the robotic actions are tightly
related to the amount of assistance that is required to offer to the cohabitant.
Specifically, when the robot’s level of alert about the human is increased, the
planned robot actions should be more intensive and interventional in order the
robot to become complacent about the human, while in intermediate levels of
robot alert more discreet actions should be planned.

3 Proposed Method for Decision Making Design

3.1 Robotic-wise POMDP formulation

For the proposed problem formulation, it is essential to interpret the generic
POMDP design theory [19] in a robotic-wise manner, considering the explicit
assistive robot scenarios where the problem domain comprises the environment,
the human and the robot. Towards, this direction, the discrete POMDP is de-
signed as a tuple P = {S,A,Ω,R O, T, b0} where:

– S = {s1, s2, ..., sn} denotes the States space that determines the condition
of the environment, the human and the robot at each time t.

– A = {a1, a2, ..., an} denotes the Actions space that encloses all the actions
that the robot is able to perform so as to interact with the human and the
environment.



– Ω = {ω1, ω2, ..., ωn} denotes the Observations space that comprises the
robot perception input from the human and the environment, yet under the
assumption that an observation ω partially describes the state of the previous
entities.

– R = (A,S) comprises a Reward function that determines the restrictions
imposed by penalizing or endorsing specific robotic actions (A) during the
interaction with the human and the environment (S).

The challenging part during the design of POMDPs is the determination
of the probability distributions of the initial state (b0), the states transitions
(T ) and the observations (O), something that makes the POMDP designers
to frequently rely on phycologists to empirically quantify these values under
assumptions that are difficult to be assessed.

– The probability distribution of the initial state comprises the likelihood
about the environment, the human and the robot to be in specific state
s at the time t = 0 such as:

b0(s) = P (s0 = s) (1)

– The probability distribution of the state transition comprises the probability
of propagating to state s′ given that the domain is in state s and the robot
selects an action a and the its respective expression is provided as:

T (s, a, s′) = P (st = s′|st−1 = s, at−1 = a) (2)

– The probability distribution of the observations comprises the uncertainty
for the perception of an observation ω considering that the environment and
the human are in state s and the robot has performed the action a, also
expressed as:

O(s, a, ω) = P (ωt = ω|st−1 = s, at−1 = a) (3)

– The probability distribution about the current state of the environment,
the human and the robot assuming to be in s, being partially observable
through observation ω. Since it is not possible to define the current state
with complete certainty a belief distribution is maintained to express the
history of the robotic actions and state transitions of the domain such as at
time t, the robot, the human and the environment are at state s considering
the sequence of past combination of actions and observations as follows:

bt(s) = P (st = s|ωt, at−1, ωt−1, ..., a0, b0) (4)

The explicit definition of the aforementioned probabilities indicate the design
of a well-formed POMDP model, the solution of which can be achieved through
the existing solvers [16]. The outcome of this solution is an action selection policy
π that maximizes the sum of the expected future reward up to specific time. This
policy comprises a mapping from the current state belief probability to the action
space A. Given the computed policy, the robot can select an optimal action by
computing its belief state based on the following update rule:

b′(s′) =
O(s′, a, ω)

∑
s∈S T (s, a, s′)b(s)

P (ω|a, b)
(5)

where b′ is the updated belief, b is the given belief at the previous time step
and (a, ω) is the latest combination of robot action and observation.



3.2 Design Methodology of POMDP models

Following the aforementioned theory it is revealed that the precise algorithms
required for the computation of optimal policies are defined by an exponential
computational growth. A single step of value iteration to compute the next se-
lected action is on the order of |Ct| = O(|A||Ct−1||Ω |), where |Ct−1| corresponds
to the number of components required to represent the next selected action at
iteration t− 1, while the computational burden is estimated by taking into con-
sideration the number of iterations in each step for the O(|S|2A||Ct−1||Ω|). This
exponential growth for the computation of the optimal policy constrains the ex-
perts to design POMDP models limited to solve specific robotic tasks, since the
number of states and actions grows drastically when trying to model real life
applications scenarios by considering an abundance of environment, human and
robot states, and many robotic actions that needs to be determined.

In this scope, the proposed work aims to introduce a POMDP designing
methodology suitable for the decision making of multipurpose, social assistive
service robots, that will be capable of resolving multiple assistive tasks, as derived
in our specific case from computer vision based human activity monitoring.

This is achieved by abstracting the state and action space given the awareness
of the robot for the user. Specifically, since the state space is partially observable,
it can only be conceptually grouped by defining scalable blocks of states that
correspond to distinct levels of robot alert S = {SH , SM , SL}. Herein, the state
space is conceptually partitioned in three levels of robot alert namely High,
Medium and Low. The states that may belong to the SH level of robot alert
group correspond to phases in the assistive task that the human requires drastic
assistance from the robot. The SM levels of robot alert define the group of states
within the task, in which the robot has already been engaged in an assistive task
and the levels of awareness about the human have been moderated. Last, the SL
levels of robot alert outlines these states where the assistive scenario has been
resolved, the required intervention is diminished and the robot is complacent
about the status of the human.

The additive value of the conceptual partitioning of the state space is that
it indirectly defines groups of robotic actions, the context of which is related to
the type of robot intervention required for the scenario denouement, given the
current robot awareness about the human. Towards this direction, the action
space is partitioned as follows A = {AT , AC , AM}. The AT set corresponds to
highly interventional robotic actions necessitated when the environment and the
human is at the SH ; the AC set reflects more discreet robotic actions when the
status of the domain is assessed to be at SM and the AM consists of rather pas-
sive robotic actions, in essence applied when the levels of robot alert about the
human are diminished, i.e. SL. More precisely, the AT set involves all the robotic
actions required to fulfil a robot engagement to resolve a specific task i.e. naviga-
tion, manipulation, grasping, hand over, which is orchestrated by a task-specific
planner. The AC set of actions is less invasive than the AT set and comprises
the bidirectional communication planning required for the communication with
the user supporting modalities such as dialogues, user interface displays, gestures



Fig. 1. The conceptual representation of the design methodology. The observations
incline to transit the system to higher level of robot alerts while the decided robotic
actions tend to switch the system to lower level of robot alert.

and even notification with augmented reality. The AM set of actions corresponds
to the monitoring components of the robot triggering functionalities suitable for
assessment of the current status of the human and the environment, such as hu-
man detection and tracking, human cognitive and physical abilities assessment,
activities interpretation and objects detection and recognition. It is revealed that
this set of actions is passive, since the robot monitors the human and the envi-
ronment, while the observations acquired from these actions is expected to alter
the state of the domain. Although it is evident that complete situation aware-
ness is not feasible since the environment and the human should be modeled and
monitored with limited robot sensors and the acquired sensor observations are
noisy, the designed POMDP model aims to propagate the system to the SL set of
states by selecting the corresponding set of actions. This feature is regulated in
the proposed design methodology by carefully assigning the values at the reward
function, endorsing thus the system respectively. In particular, a positive reward
value is passed to the model when the selected action transits the system from
higher to lower level of robot alert state, while a negative reward value is passed
to the model when the selected action tends to bring the system to a higher level
of robot alert. A uniform distribution is applied in the rewards function when
the system passes from medium to medium levels of robot alert states. Through
this methodology, the POMDP model is designed in a human-centric manner,
where the partial observable set of states correspond to the status of the human
and the environment, while the set of actions are solely robotic related resulting
thus, in a prompting system aiming to draw decisions about the robot interven-
tion in order to reduce the awareness of the robot about the human and thus,
solve the assisting scenario.

The principal behind the design of such a POMDP model is outlined in Fig. 1,
where a conceptual representation of the levels of robot alert along with the ac-



tions space and the observations space is graphically illustrated. Specifically, the
figure represents all possible triplets (s, a, ω) of actions, states, and observations
with respect to their probability of occurrence. The actions space is divided into
three major categories which subsequently effect the conceptual clustering of the
states of the domain in terms of robot alert levels. On the contrary, observations
remain the free parameter that dictates the probability of simultaneous occur-
rence for each triplet. Additionally, the observations probabilities of occurrence
are graphically illustrated in terms of a color map in Fig. 1. To this end, the
immanent trend of the observations is to increase the robot’s alert level i.e. tran-
sition to a state that belongs to high level of alert, while the system through
actions attempts to stabilize the system in states that belong to a group of lower
level of robot alert.

4 An Exemplified Case Study

At this point, it should be stressed that the work presented herein aims at
defining a POMDP model-design framework, suitable for decision making in
assistive service robotic applications, while the exact solver used for the policy
π is out the scope of this work, as we assume that any solver is adequate to
converge in a solution given a well structured POMDP model [16]. Since, to the
best of our knowledge no similar work that focuses on the design methodology
of POMDP models for robotic applications exists and the current applications
recall the superior knowledge of the experts for such a design, a direct comparison
of our method is not feasible. However, we append herein a realistic modelling
of an assistive scenario utilizing our POMDP design methodology, while the
validity of the derived decision making policy has been assessed with simulation
and proved adequate to resolve the scenario successfully.

A challenging objective for the contemporary service robots living with el-
derly is to monitor their daily activities, interpret hazardous situations and to
notify a relevant or ask for external help. More specifically, we consider the sce-
nario of robot assisting elderly people during cooking activities where it is com-
mon phenomenon to forget electric appliances turned on. Specifically, during
cooking activity the robot observes the human gathering the products required
to prepare a specific meal. The robot monitors this activity and in case that
some objects-materials are missing it asks the human if it should fetch those
objects and if in cast that it receive an affirmative response it acts accordingly.
In the normal situations where all objects have been successfully fetched the
robot proactively examines the state of their storage place i.e. fridge, cupboards
and identifies their state. The robot once again communicates with the human
to notify him/her about the situation and if it is necessary it is engaged in a
robotic action to close a forgotten appliance. In hazardous situations the robot
assesses the risk, and decides whether external help is required utilizing an ex-
ternal communication channel. It is apparent that the aforementioned scenario
is very complex and requires advanced decision making from the robot in order
to decide when and how to intervene in order to assist the human.



Fig. 2. An indicative state diagram that supports the robot decision making for as-
sisting elderly during daily cooking activities. In this diagram, the task related robotic
actions are highlighted with blue, the communication with the humans related actions
are highlighted with magenta and the human and environment monitoring robotic
actions are highlighted with green.

The flow of this scenario can be ideally described by a state diagram that
conjugates the states of the domain with the robot actions as exhibited in Fig. 2,
the aim of which is to identify all the required robot actions need to be mod-
eled. In this figure, the task related robotic actions are highlighted with blue
and retain the abbreviation “RTP#”. The robotic actions related to the direct
communication with the human are highlighted with magenta and retain the
abbreviations “Dialog#” and “Dialer#”, while the monitoring robotic actions
connected with the detection of the human and environment state are high-
lighted with green. A summary of the explicit interpretation of these robotic
actions is provided in Table 1. Moreover, following the designed methodology
described in Sec. 3.2, the identified robot actions and the domain state space are
grouped accordingly. By carefully examining the diagram in Fig. 2 it is revealed
that the observations acquired from the actions that belong in the set of actions
AM , tend to transit the system to higher level of alert while the observations
gathered from actions linked to AT and AC sets, propagate the system to a
lower level of robot alert. The aforementioned remark is also justified by the
fact that the scenario starts and finalizes from a state that belongs to the SL



Levels of Robot Alert Actions

High Medium Low Task Communication Monitoring

State-3 State-2 State-1 RTP1: Robot
navigates to the
parking position
suitable to mon-
itor the state of
appliance

Dialog1: Robot
communicates
with human
about some miss-
ing objects and
asks if it should
fetch them

Object-
Detection:
The SW com-
ponent suitable
to detect and
recognize small
objects

State-6 State-5 State-4 RTP2: Robot
navigates to the
parking position
suitable to mon-
itor the cooking
activity

Dialog2: Robot
communicates
with human
about forgetting
to turn off an
appliance and
asks if it should
close it

Large object
detection: The
SW component
suitable to recog-
nize the state of
large articulated
objects

State-8 State-12 State-7 RTP3: Robot
plans the actions
for navigation
and manipula-
tion of appliance

Dialog3: Robot
informs the hu-
man that it will
go manipulate
the appliance

Registry: The
SW component
suitable to regis-
ter the incidents

State-15 State-14 State-9 RTP4: The
robot fetches the
missing objects

Dialer: The
robot failed to
turn off the
appliance and
notifies for
external help

Parking Posi-
tion: The SW
component suit-
able to switch
the robot in
monitoring state
where the human
and environment
are observed

— — State-10 — — —

— — State-13 — — —

— — State-16 — — —

Table 1. Mapping from state diagram to POMDP interpretation using Level of Robot
Alerts (LoRA) and Actions. Note that State− 11 and State− 17 are considered to be
control states and when the system prompts a respective action the robot is switched
to the monitoring state while the scenario could be re-initialized.

conceptual set of domain states. The arrows that link the states are functional
operators and correspond to specific observations expected to be returned after
the execution of the corresponding action, which are strictly declared within
the POMDP model passing increased observation probabilities to the respective
(s, a, ω) triplets. During the design phase of the POMDP, such diagrams can be
considered as maps that constraint the produced policy π by defining the transi-
tion probabilities among the linked states with increased probability values using
the expression described in Eq.2. At the same time, the probabilities stemming
from observations among linked robotic actions are also explicitly declared dur-
ing the design of the POMDP passing increased values to the Eq. 3, while the



rest of the observations are modeled within the POMDP as described in [19].
An important role during the design phase is play the definition of the rewards;
where a very positive reward is passed to system when it transits from a state
of high a state to lower level of alert, while a very negative reward in passed in
the opposite situation. Finally, by using the belief state update as described in
Eq. 5 the system can start from any state in the derived policy graph π, and is
able to reach to a monitoring related state (SM ) due to the descending designed
method of the POMDP model in terms of levels of robot alert.

5 Conclusions and Future Work

In this work, a theoretical framework for designing POMDP models suitable for
multipurpose robotic applications has been introduced. Specifically, the limita-
tion in the POMDP design due to the great amount states and robot actions that
need to be modeled in real life scenarios is tackled herein with a human-centric
design method where the robotic actions are decided based on the awareness
of the robot about its cohabitant. The POMDP theory has been interpreted in
a robotic-wise manner and the methodology presented herein is based on the
conceptual abstraction of the state space using level of robot alerts, which are
conjugated with respective groups of robotic actions. Through this procedure
the context of the robot actions are connected to the type of assistance that
is required to offer and it has been proved that intense robotic actions such as
navigation and manipulation tend to transit the system at lower level of robot
alerts making the robot complacent about the human. The proposed theoretic
framework has been applied in a challenging scenario suitable for assistive robots
by analyzing the foreseen robotic sub-tasks in a step-wise manner. Through this
procedure, designing details about the parameterization of a POMDP model has
been provided offering to the respective community a paradigm to design simi-
lar decision making models. Through this procedure, a native decision making
system has been designed based on prompting system discharging the POMDP
model from the burden to handle low-level robotic actions. In our future work
we plan to extend our method by connecting the robotic high-level actions with
task and communication planners with the aim to introduce a complete decision-
and-act system suitable to operate on multipurpose assisting robots.
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